
- •Список сокращений и словарь технических терминов
- •Содержание
- •Введение
- •1.Состояние проблемы. Цели и задачи исследования
- •1.4. Выводы, постановка цели и задач исследования
- •2.Единая система управлениядвижения поездов
- •2.1.Предпосылки создания
- •2.2.Цели проекта и структура системы ertms/etcs
- •2.3.Приемоотвечик eurobalise
- •2.4.Шлейф euroloop
- •2.5.Система радиосвязи euroradio
- •2.6. Локомотивное оборудование eurocab
- •2.7. Первая ступень оснащения etcs (level 1)
- •2.8.Вторая ступень оснащения etcs (level 2)
- •2.9.Третья ступень оснащения etcs (level 3)
- •2.10. Различные режимы ведения поезда
- •3.Микропроцессорная система централизацииebilock-950
- •3.1.Эксплутационно-технические характеристики системы
- •3.2. Структура системы
- •3.3. Процессорный модуль централизации
- •3.3.1. Аппаратные средства
- •3.3.2.Структура аппаратных средств
- •3.4.Методы обеспечения безопасности
- •4.Увязка ertms/etcs и мпц ebilock-950
- •4.1.Опыт внедрение зарубежных железных дорог
- •4.2. Совместное использование мпц Ebilock-950 и ertms/etcs на железных дорогах Украины
- •5.Отказы микропроцессорных систем. Методы повышения безотказности и безопасности микропроцессорных систем
- •5.2. Применения точечных путевых датчиков в области железнодорожной автоматики
- •5.2.1.Типы датчиков. Емкостные датчики
- •5.2.2. Индуктивные датчики
- •5.2.3. Датчики пути и скорости
- •5.2.4. Датчики контроля проследования поезда
- •5.2.5. Принцип действия и основные параметры точечных путевых датчиков счета осей
- •5.2.6. Принцип действия магнитоиндукционного путевого датчика
- •5.2.7. Принцип действия индукционного электромагнитного путевого датчика
- •5.2.8. Потенциометрические датчики
- •5.2.9. Гальванический преобразователь
- •5.2.10. Термоэлектрические преобразователи
- •5.2.11. Оптические датчики
- •5.2.12.Пьезоэлектрические преобразователи
- •5.2.13. Тензочувствительные преобразователи (тензорезисторы)
- •Ппппппп
- •Список использованной литературы
- •Список рисунков
- •Список таблиц
- •Аннотация
3.Микропроцессорная система централизацииebilock-950
3.1.Эксплутационно-технические характеристики системы
Как уже отмечалось ранее, отечественные железные дороги положили курс на интеграцию в общую европейскую сеть. Одним из шагов для достижения данной цели является внедрение микропроцессорных систем автоматики. Переход от релейной централизации к микропроцессорной не является данью моде. Это — объективная необходимость обновления всего технологического процесса управления перевозками и работой структурных подразделений железнодорожного транспорта на основе применения информационных технологий. Здесь сразу проявляются преимущества МПЦ, которая служит удобным связующим звеном между источниками получения первичной информации (подвижной состав, объекты СЦБ и др.) и системами управления перевозочным процессом более высокого уровня, позволяя обойтись без дополнительных надстроек, которые были бы нужны при использовании электрической централизации на базе реле. Выбор системы МПЦ для будущего внедрения на железнодорожных станциях Украины является довольно таки сложным и нелегким. В этом случаи необходимо тщательно изучить все технические особенности существующих систем. В первую очередь необходимо уделить особое внимание на системы, которые эксплуатируются на жд сетях, имеющих сходную фундаментальную базу, т.е. на территории соседних государств: России, Белорусии. Одной из новых перспективных систем является МПЦ Ebilock-950.
Система Ebilock-950 адаптирована, т.е. ее основные эксплуатационно-технические характеристики соответствуют требованиям, предъявляемым к системам электрической централизации (ЭЦ), эксплуатируемым в настоящее время в РФ. Вместе с тем программируемая элементная база позволила улучшить эксплуатационные свойства системы, реализовав с ее помощью следующие дополнительные функции:
«Блокировка стрелки в заданном положении», выполняемая по команде оператора и обеспечивающая индивидуальную блокировку стрелки, указанной в его команде. После этого невозможен индивидуальный перевод стрелки или использование ее в маршруте в положении отличном от заблокированного. Допустимо использовать стрелку в маршруте, если его трасса совпадает с положением стрелки;
«Блокировка секции», выполняемая по команде оператора и обеспечивающая индивидуальное блокирование секции, указанной в его команде, с исключением возможности открытия сигнала в маршруте через данную секцию;
«Установка поездного маршрута с автоматическим действием сигналов»;
контроля горения запрещающих показаний на маневровых светофорах прикрытия при задании поездных маршрутов. Открытие светофора в поездном маршруте на разрешающее показание происходит только при горении на маневровом светофоре прикрытия запрещающего показания, если до этого светофора установлен маршрут. После открытия поездного светофора контроль горения запрещающего показания на маневровом светофоре прикрытия исключается.
Программно-аппаратными средствами АРМ ДСП реализован ряд информационно-сервисных функций, связанных с визуализацией и протоколированием действий ДСП и состояния напольного оборудования, а также неисправной работы технических средств системы МПЦ. Графический пользовательский интерфейс базируется на возможностях операционной системы Microsoft Windows NT. Он обеспечивает интегрированную среду для всех операций ДСП и единый подход построения системы меню, диалоговых ввода и вывода сообщений.
В системе, кроме основного, предусмотрен режим вспомогательного управления, в который переходят при частичной неработоспособности устройств МПЦ, отказах объектов управления и кабельной сети станции.
Во вспомогательном режиме управления соблюдаются особые условия взаимодействия оператора и системы МПЦ, направленные на проверку осмысленности действий оператора. К таким условиям относятся:
однозначно воспринимаемая, четкая, ясная индикация действий;
повторные запросы от системы к оператору с пояснением производимых им действий, требующих подтверждения;
обязательное требование от системы к оператору на указание причины работы во вспомогательном режиме, которая должна быть зафиксирована и зарегистрирована ею. В данном режиме обеспечивается:
«Индивидуальный перевод стрелок без контроля состояния стрелочной рельсовой цепи (в случае ложной занятости)»;
«Установка маршрутов без открытия разрешающего показания светофоров».
МПЦ Ebilock-950 может быть реализована в двух вариантах: с централизованным и децентрализованным размещением оборудования. В первом варианте процессорный модуль централизации (ПМЦ), Interlocking Processing Unit (IPU), реализующий логические взаимозависимости между станционными объектами, и аппаратура управления напольными устройствами (система объектных контроллеров—СОК) располагаются на посту централизации. Во втором варианте ПМЦ размещается на посту централизации, а СОК распределяется по станции в непосредственной близости от объектов управления.
Один комплект ПМЦ может управлять 150 логическими объектами (образами физических объектов станции в программе компьютера), 1000IPU объектов (стрелками, светофорами, обмотками и контактами реле), что приблизительно соответствует станции, имеющей около 40—60 стрелок. Количество управляемых объектов может быть увеличено путем увеличения числа ПМЦ. Емкость системы по количеству петель связи, концентраторов и объектных контроллеров характеризуется максимальным количеством:
петель связи на один ПМЦ— 12;
концентраторов в каждой петле связи —15;
объектных контроллеров в каждой петле связи — 32.
В Ebilock-950 предусмотрено 100 %-е резервирование постовых устройств, применение собственных источников электропитания, рассчитанных на автономную работу в течение не менее 0,5 ч, специальное построение линий связи и каналообразующей аппаратуры, позволяющее сохранять работоспособность системы при возникновении отказов.