Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика Экзамен.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.69 Mб
Скачать

49. Взаимодействие рентгеновского излучения с веществом.

Регистрация и использование рентгеновского излучения, а также воздействие его на биологические объекты определяются первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

Рассеяние длинноволнового рентгеновского излучения происходят в основном без изменений длины волны, его называют а) когерентным. Оно возникает, если энергия фотона меньше энергии ионизации: hНЮ<Au. Оно не вызывает биологического действия этот вид взаимодействия имеет значение для рентгеноструктурного анализа б) некогерентное рассеяние (эффект Колектона) длина волны рассеянного рентгеновского излучения больше, чем падаюшая: hНЮ>Au. При взаимодействии с атомами энергия (hНЮ) фотона расходуется на образование нового рассеянного фотона рентгеновского излучения с энергией (hНЮ’) на отрыв электрона от атома (энергия ионизации Au) и сообщение электрону кинетической энергии Ек. hНЮ=hНЮ'+Au+Ек

Атомы или молекулы при этом становятся ионами в) фотоэффект -рентгеновское излучение поглощается атомом - вылетает электрон, а атом ионизируется. Эти основные процессы взаимодействия рентгеновского излучения с веществом первичные, но есть и вторичные, третичные и т.д. явления. Например, ионизированные атомы могут излучать характеристический спектр, возбужденные атомы могут стать источником света и т.п. Может происходить несколько десятков процессов, прежде чем энергия рентгеновского фотона перейдет в энергию молекулярно-теплового движения. В итоге произойдут изменения молекулярного состава вещества.

50. Физические основы рентгенографии

Одно из наиболее важных медицинских применений рентгеновского излучения - просвечивание внутренних органов с диагностической целью (рентгенодинамика).

Для диагностики используют фотоны с энергией порядка 60-120кэВ. При этой энергии шоковый коэффициент ослабления в основном определяется фотоэффектом. Его значение обратно пропорционально третьей степени энергии фотона, в чем проявляется большая проникающая способность жесткого излучения, и пропорционально третий степени атомного номера вещества-поглотителя M=k*лямбда в 3*zв3, k- коэф, пропорциональности.

Существенное различие поглощения рентгеновского излучения разными тканями позволяет в живой проекции видеть изображение внутренних органов тела человека.

Рентгенодиагностику используют в двух вариантах: рентгеноскопия-изображение рассматривают на рентгенолюминицирующем экранах; рентгенография изображение фиксируется на фотопленке.

Яркость изображения на фотопленке и время экспозиции зависят от интенсивности рентгеновского излучения.

Интенсивность не может быть большой, чтобы не вызвать нежелательных биологических последствий. Есть технические приспособления, излучающие изображения при малых интенсивностях рентгеновского излучения.

С лечебной целью рентгеновское излучение применяют главным образом для уничтожения злокачественных образований (рентгенотерапия)

Методы рентгеновского излучения:

  1. Флюрография

  2. Ренгтгенография

  3. Гентгеноскопия

  4. Рентгеновская томография