
- •17 Физическая модель сердечно - сосудистой системы (модель Франка). Пульсовая волна.
- •19 Строение и физические свойства биологической мембраны. Модели мембран.
- •21 Генерация потенциала покоя.
- •28.Физические процессы в тканях организма под действием электромагнитных высокочастотных токов и полей.
- •29. Импульсный сигнал и его параметры. Изменение формы импульсного сигнала при прохождении им линейных цепей.
- •35 Интерференция света в тонких пленках. Просветление оптики. Интерференционные зеркала.
- •37, Дифракционная решетка. Дифракционный спектр.
- •38. Свет естественный и поляризованный. Закон Малюса.
- •39. Поляризация при двойном лучепреломлении. Дихроизм.
- •40. Вращение плоскости поляризации. Поляриметрия.
- •41. Оптическая система глаза. Аккомодация. Угол зрения. Разрешающая способность глаза.
- •49. Взаимодействие рентгеновского излучения с веществом.
- •51 Радиоактивный распад как источник ионизирующего излучения. Активность.
- •53. Поглощенная и экспозиционная дозы, единицы их измерения. Мощность дозы. Эквивалентная доза.
35 Интерференция света в тонких пленках. Просветление оптики. Интерференционные зеркала.
При попадании света на тонкую прозрачную пленку образуются когерентные волны, одна из которых отразилась от верхней части пленки, а другая - от нижней S.
Альфа = гамма (закон отражения)
1 - падающий луч от источника света
2 - отраженный
3 - преломленный
Альфа - угол падения
гамма - угол отражения
фи – угол преломления
Для максимумов интерференции в пленке 2dn^2-sin^2α - разность хода волн (2) и (3) равна (2к+1)*лямда/2
Для минимумов: 2dn^2-sin^2α=k*лямда
n - показатель преломления вещества пленки
Это явление используют для просветления оптики. Линзы покрывают тонкой диэлектрической пленкой, толщина которой подбирается таким образом, чтобы пучки света, отраженные от ее верхней и нижней части, встретились в фазе, т.е. d=k*лямда/2n - толщина пленки. Поэтому отраженные от пленки пучки гасят друг друга, в результате свет не отражается от стекла линзы, а весь проходит сквозь нее. Это особенно важно в приборах с большим количеством линз - микроскоп, спектроскоп и др. Изображение рассмотренных предметов при этом более яркое.
Интерференция света используется в интерферометрах для изучения длин волн, небольших расстояний, показателей преломления веществ, определения качества оптических поверхностей. Здесь используется два взаимно перпендикулярных зеркала: свет от источника, падая на одно и другое зеркала, раздваивается, по разности хода лучей, отраженных от зеркал, судят о длине волны, показателях преломления.
36Дифракция света на щелях.
Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями. Описать картину дифракции можно с учетом интерференции вторичных волн.
Рассмотрим дифракцию от узкой щели (АВ)
MN – непрозрачная преграда;
АВ=а – ширина щели;
АВ – часть волновой поверхности, каждая точка которой является источником вторичных волн, которые распространяются за щелью по разным направлениям. Линза соберет лучи А, А1 и В в точке О1 экрана.
АD - перпендикуляр к направлению пучка вторичных волн. Разбили ВD на отрезки =лямда/2.
АА1, А1В - зоны Френеля. Вторичные волны, идущие от двух соседних зон Френеля, не гасят друг друга, так как отличаются по фазе на пи. Число зон, укладывающихся в щели, зависит от длины волны лямда и угла альфа.
Если щель АВ разбить при построении на нечетное число зон Френеля, а ВD на нечетное число отрезков, равных лямда/2, то в точке О1 наблюдается максимум интенсивности света. ВD=а*sinα=+-(2k+1)*лямда/2.
Если щель разбить на четное число зон Френеля, то наблюдается минимум освещенности: а*sinα=+-2k*лямда/2=+-k*лямда.
Поэтому на экране получится система светлых (mах) и темных (min) полос симметричных относительно центра (альфа=треугольник - изменение) - наиболее яркой полосы.
Интенсивность остальных максимумов убывает с увеличением к.
37, Дифракционная решетка. Дифракционный спектр.
Дифракционная решетка - оптическое устройство, представляющее собой совокупность большого числа параллельных щелей, равноудаленных друг от друга.
Суммарная ширина щели и штриха (a+b=d) – период решетки.
! d=((a+b)*N)/N=C/N!, где С –ширина решетки, N -число штрихов на ней.
на нем: Л- линза; Р – решетка; Э - экран
Максимумы, которые образуются на экране, после интерференции вторичных волн, идущих от узких щелей, удовлетворяют условию:
!d*sin фи = k*лямбда! - формула дифракционной решетки.
фи - угол дифракции (угол отклонения от прямолинейного направления);
k - порядок спектра;
лямбда - длина волны света, освещающего решетку,
Дифракционные спектры для монохроматического света представляет собой чередование максимумов и минимумов по обе стороны от центрального механизма. Максимумы имеют цвет соответствующей длины света, освещающего решетку.
Если решетку освещать белым светом, то центральный максимум будет белым, а остальные будут представлять собой чередование цветных полос плавно переходящих друг в друга, т. к. sin фи= k*лямбда/d - зависит от длины волны света. D = к/t - угловая дисперсия решетки. R =k*N - разрешающая способность.