
- •Содержание
- •Введение
- •Внутренняя энергия
- •Обратимые процессы
- •Энтропия
- •Правило фаз
- •Устойчивость
- •Принцип Лешателье (теорема торможения)
- •Механизм реакций
- •Диффузия
- •Скорость образования новых фаз
- •Температурный коэффициент скорости реакции
- •Модуль I Магматические горные породы
- •Тема 1. Магма и кристаллизация магматических расплавов Лекция 1. Общие понятия о магме
- •1.1. Строение Земли
- •1.2. Природа магмы
- •1.3. Температура магм
- •1.4. Процесс охлаждения магмы
- •Лекция 2. Родоначальные магмы
- •2.1. Природа и происхождение ультраосновной магмы
- •Серпентинизация перидотитов
- •Между 500 и 625 ºС - оливин→тальк;
- •Между 625 и 800 ºС – оливин→энстатит→тальк;
- •Выше 800 ºС - оливин→энстатит.
- •Плавление природных перидотитов и варианты моделей плавления
- •2.2. Происхождение базальтовой магмы
- •2.3. Происхождение гранитной магмы
- •Лекция 3. Причины разнообразия магматических пород
- •3.1. Магматическая дифференциация
- •3.2. Ассимиляция
- •3.3. Гибридизация магмы
- •3.4. Смешение магм
- •3.5. Условия кристаллизации магмы
- •Лекция 4. Общие закономерности кристаллизации магмы
- •4.1. Кристаллизация по закону эвтектики
- •Диаграмма кристаллизации по закону эвтектики в системе диопсид-анортит
- •4.2. Кристаллизация по закону перитектики
- •Диаграмма кристаллизации по закону перитектики в системе форстерит-кремнезем
- •4.3. Кристаллизация по закону непрерывного реакционного взаимодействия (в системах с твердыми растворами)
- •Диаграмма кристаллизации с образованием твердых растворов в системе альбит-анортит
- •4.4. Влияние летучих компонентов на кристаллизацию магмы
- •Образование зонального строения плагиоклазов
- •4.5. Закономерности парагенетических ассоциаций и последовательность выделения минералов
- •4.6. Реакционные ряды минералов
- •Последовательность кристаллизации минералов (по Боуэну)
- •Тема 2. Характерные особенности и классификация магматических пород Лекция 5. Вещественный состав магатических горных пород
- •5.1. Химический состав магматических горных пород
- •5.2. Петрохимические пересчеты
- •Нормативный метод Кросса, Иддингса, Пирсона и Вашингтона (cipw)
- •Нормативно-молекулярный метод п. Ниггли
- •Метод а.Н. Заварицкого
- •5.3. Минералогический состав магматических пород
- •Разделение минералов по их значению в магматической породе
- •Разделение минералов по происхождению
- •Лекция 6. Краткий обзор главных породообразующих минералов магматических пород
- •6.1. Полевые шпаты
- •Плагиоклазы
- •Щелочные (калиево-натриевые) полевые шпаты
- •6.2. Кварц и некоторые модификации SiO2
- •6.3. Фельдшпатоиды
- •Нефелин
- •Содалит и канкринит
- •6.4. Оливин
- •6.5.Пироксены
- •Ромбические пироксены
- •Моноклинные пироксены
- •6.6. Амфиболы
- •Обыкновенная роговая обманка
- •Базальтическая роговая обманка
- •6.7. Слюды
- •Мусковит
- •6.8. Рудные минералы
- •6.9. Акцессорные минералы
- •6.10.Вторичные минералы
- •6.11. Количественно-минеральный состав и систематика магматических пород
- •Лекция 7. Формы залегания магматических горных пород и внутреннее строение интрузивных и экструзивных тел
- •7.1. Экструзивные тела
- •7.2. Интрузивные тела
- •Согласные интрузивные тела
- •Несогласные (секущие) тела
- •7.3. Внутреннее строение экструзивных и интрузивных тел
- •8.1. Структуры магматических пород
- •Кристаллографический габитус главных минералов
- •Идиоморфизм и степень идиоморфизма
- •Закономерные срастания, прорастания и включения
- •Полнокристаллические структуры
- •Неполнокристаллические структуры
- •Скрытокристаллические (криптокристаллические) структуры
- •Стекловатые (гиалиновые) структуры
- •Вулканокластические (пирокластические) структуры
- •8.2. Текстуры магматических пород
- •Разделение текстур по ориентировке составных частей породы в пространстве
- •Разделение текстур по характеру заполнения пространства
- •Лекция 9. Классификация и номенклатура магматических пород
- •9.1. Особенности интрузивных пород и их классификация
- •9.2. Особенности эффузивных пород и их классификация
- •9.3. Особенности жильных (гипабиссальных) пород и их классификация
- •Асхистовые породы
- •Диасхистовые породы
- •Тема 3. Главные типы магматических пород Лекция 10. Гипербазиты (ультраосновные породы, группа перидотита)
- •10.1. Интрузивные породы
- •Оливиниты
- •Перидотиты
- •Пироксениты
- •Горнблендиты
- •10.2. Гипабиссальные породы
- •10.5. Генезис гипербазитов
- •Лекция 11. Базиты (мафиты, группа габбро-базальтов)
- •11.1. Интрузивные породы
- •11.2. Жильные (гипабиссальные) породы
- •Асхистовые породы, связанные с интрузивными телами
- •Диасхистовые породы, связанные с интрузивными телами
- •Гипабиссальные породы, залегающие независимо от интрузивных тел
- •11.3. Эффузивные породы
- •Базальты
- •Эффузивные долериты
- •Базальтовые порфириты и эффузивные диабазы
- •Спилиты
- •Вариолиты
- •11.4. Распространенность базитов и связанные с ними полезные ископаемые
- •11.5. Генезис базитов
- •Расслоенные (псевдостратифицированные) интрузии
- •Докембрийская ассоциация анортозитов
- •Эффузивные ассоциации основных пород
- •Лекция 12. Среднекремнекислые породы известково-щелочного ряда (группа диоритов-андезитов)
- •12.1. Интрузивные породы
- •Диориты
- •Кварцевые диориты
- •12.2. Жильные (гипабиссальные) породы
- •Асхистовые породы
- •Диасхистовые породы
- •12.3. Эффузивные породы
- •Андезиты
- •Андезитовые порфириты
- •12.5. Генезис среднекремнекислых пород
- •Лекция 13. Кремнекислые породы (группа гранитов-риолитов гранодиоритов-дацитов)
- •13.1. Интрузивные породы
- •Нормальные граниты
- •Гранодиориты
- •Щелочные граниты
- •Чарнокиты
- •13.2. Жильные (гипабиссальные) породы
- •Асхистовые породы
- •Диасхистовые породы
- •13.3. Эффузивные породы
- •Кайнотипные породы
- •Палеотипные породы
- •Афировыеые породы
- •13.4. Распространенность кремнекислых пород и связанные с ними полезные ископаемые
- •13.5. Генезис кремнекислых пород
- •Лекция 14. Среднекремнекислые субщелочные породы (группа сиенитов-трахитов)
- •14.1. Интрузивные породы
- •Нормальные сиениты
- •Щелочные сиениты
- •Условия залегания и происхождение
- •14.2. Гипабиссальные породы
- •14.3. Эффузивные породы
- •Трахиты и трахитовые порфиры
- •Трахибазальты
- •Трахиандезиты
- •Трахириолиты
- •Кератофиры
- •Условия залегания и происхождение
- •14.4. Полезные ископаемые
- •Лекция 15. Среднекремнекислые щелочные породы (группа нефелиновых сиенитов-фонолитов)
- •15.1. Интрузивные породы
- •15.2. Гипабиссальные породы
- •15.3. Эффузивные породы
- •15.4. Полезные ископаемые
- •Лекция 16. Группа щелочных габброидов-базальтоидов
- •16.1. Интрузивные породы
- •16.2. Гипабиссальные породы
- •16.3. Эффузивные породы
- •16.4. Полезные ископаемые
- •Лекция 17. Несиликатные магматические породы
- •Лекция 18. Вулканокластические породы
- •18.1. Эффузивно-обломочные породы
- •18.2. Эксплозивно-обломочные (пирокластические) породы
- •18.3. Осадочно-вулканокластические породы
- •Проектное задание к модулю I
- •Тест рубежного контроля к модулю I
- •Модуль II Метаморфические горные породы
- •Тема 1. (Лекция 1) метаморфизм и его признаки
- •1.1. Факторы метаморфизма
- •1.2. Типы метаморфизма
- •Тема 2. (Лекция 2.) состав и строение метаморфических пород
- •2.1. Состав метаморфических пород
- •2.2. Фации метаморфизма
- •2.3. Текстура метаморфических пород
- •2.4.Реликтовые текстуры и структуры, унаследованные от осадочных пород
- •2.5. Реликтовые текстуры и структуры, унаследованные от магматических пород
- •2.6. Реликтовые текстуры и структуры, унаследованные от метаморфических пород
- •2.7. Кристаллобластовая структура и кристаллобластический ряд
- •2.8. Структуры динамометаморфизма
- •Тема 3. (Лекция 3.) принципы классификации метаморфических горных пород
- •Тема 4. Главные типы метаморфических пород Лекция 4. Катакластический метаморфизм
- •Лекция 5. Автометаморфизм
- •5.1. Автометаморфизм ультраосновных пород
- •5.2. Автометаморфизм основных и средних магматических пород
- •5.3. Автометаморфизм кислых магматических пород
- •5.4. Продукты гидротермального метаморфизма
- •Гидротермальный метаморфизм эффузивных пород
- •Лекция 6. Контактовый метаморфизм
- •6.1. Геологические условия залегания контактово-метаморфических пород
- •6.2. Общие свойства роговиков
- •6.3. Главные типы контактово-метаморфических пород
- •6.4. Фации контактового метаморфизма
- •Лекция 7. Региональный метаморфизм
- •7.1. Фации регионального метаморфизма
- •7.2. Ступени регионального метаморфизма
- •7.3. Ряды метаморфических пород
- •Метаморфические породы, возникшие за счет магматических пород
- •7.4. Полезные ископаемые, связанные с регионально-метаморфическими породами
- •Лекция 8. Ультраметаморфизм
- •Тема 5. (Лекция 9) метасоматиты
- •Основные типы метасоматоза
- •Проектные задания к модулю II
- •Тест рубежного контроля к модулю II
- •Список литературы
Диффузия
Диффузия представляет собой самопроизвольный процесс, который стремится поддерживать постоянную концентрацию во всем объеме однородной фазы. Так как химический потенциал любого компонента в однородной фазе при постоянных температуре и давлении возрастает с увеличением его концентрации. Вещество стремится самопроизвольно понижать свой потенциал, следовательно, каждый компонент будет стремиться мигрировать из участков высокой концентрации к участкам низкой концентрации, и равновесии внутри фазы может быть достигнуто только тогда, когда концентрация каждого компонента будет одинакова по всей этой фазе. Коэффициент диффузии в твердых телах обычно представляет собой очень малую величину порядка от 10-5 до 10-20 см2/сек. Коэффициент диффузии серебра в золоте при 100 ºС имеет порядок 10-20, так что в течение всего геологического времени (5х109 лет) среднее расстояние, на которое проникнет серебро в золото, будет меньше 1 мм.
Так как скорость диффузии зависит от сопротивления трения, испытываемого движущимися частицами, то следует ожидать, что существует некоторая зависимость между коэффициентом диффузии в растворе и вязкостью раствора. Эта зависимость известна под названием закона Стокса, показывающего, что коэффициенты диффузии должны уменьшаться с возрастанием вязкости раствора. Жидкости с большой вязкостью в точке плавления будут кристаллизоваться медленнее, чем менее вязкие жидкости. Этим обстоятельством объясняется образование стекла: кристаллизация протекает весьма медленно вследствие того, что частицы поступают на грани растущего кристалла с очень малой скоростью. Для жидкостей с низкой вязкостью наличие турбулентного движения способствует смесимости. Этим и объясняется, почему перемешивание иногда оказывается эффективным способом повышения скорости реакций в растворах.
Скорость образования новых фаз
Скорость кристаллизации зависит не только от скорости, с которой молекулы, ионы и атомы проникают к граням растущего кристалла, но также в первую очередь от скорости образования ядер или зародышей кристаллов. Проблема образования зародышей очень сложна. Основной причиной возникновения зародышей новой фазы в некоторой однородной фазе является наличие флуктуаций, то есть местных временных отклонений от нормального состояния. Если исходная фаза устойчива, эти временные отклонения самопроизвольно исчезают в течение очень короткого времени, но если фаза неустойчива, они могут расти, образуя зародыши новой фазы. Если исходная фаза метастабильна, то расти будут только флуктуации исходной величины. Эти большие флуктуации очень редки, частота их появления уменьшается экспоненциально по мере возрастания их величины.
Новая фаза никогда не образуется при таких же точно температуре и давлении, при которых она находится в равновесии с родоначальной фазой. Всегда должен наблюдаться некоторый переход (опускание) в область метастабильности или неустойчивости родоначальной фазы. Причина заключается в том, что вероятность подобного превращения равно нулю в точке равновесия, согласно определению понятия равновесия. Если сродство равно нулю, то скорость превращения неизбежно также должна быть равна нулю.
Для начала роста кристалла из раствора или расплава необходимо определенное переохлаждение. Степень переохлаждения, требующаяся для начала кристаллизации, зависит от большого числа факторов. Одним из них является поверхностное натяжение, или поверхностная энергия, на контакте кристалла с расплавом. Для образования новой поверхности требуется некоторое количество энергии. Эта энергия получается за счет энергии, выделяющейся при кристаллизации, и возрастает с увеличением разницы между химическими потенциалами жидкости и твердого тела, то есть по мере удаления от точки равновесия. Вероятность образования центра кристаллизации уменьшается экспоненциально с повышением поверхностного натяжения. Следовательно, разница химических потенциалов твердой и жидкой фаз зависит от размеров зерен твердой фазы. Весьма малое зерно имеет более высокий химический потенциал, чем более крупное. Отсюда следует, что при малом переохлаждении устойчивы только крупные зародыши, а вероятность большой флуктуации очень мала. Таким образом, в начале процесса возникает только очень немного центров кристаллизации. Их количество возрастает с увеличением степени переохлаждения, но когда переохлаждение становится большим, то есть когда температура значительно падает, скорость диффузии в расплаве также сильно уменьшается. Вследствие этого скорость роста каждого зародыша становится малой, и кристаллизация замедляется, несмотря на большое количество зародышей, возникающих на этой стадии. Все это осложняется, кроме того, необходимостью достаточно быстрого отвода теплоты, выделяющейся при кристаллизации. Кристаллизация не может развиваться быстрее, чем происходит удаление теплоты кристаллизации. Из-за большого числа участвующих в процессе факторов скорости кристаллизации весьма сильно зависят от природы и предшествовавшей истории системы.
Скорости кристаллизации в зависимости от степени переохлаждения отчетливо влияют на текстуру и структуру магматических пород. Можно предположить, что порода, состоящая из небольшого количества крупных зерен, кристаллизовалась в условиях умеренного переохлаждения. В этом случае количество зародышей невелико, но скорость роста каждого кристалла довольно значительна. Значительна также при этом скорость диффузии и высока температура. Наоборот, порода, состоящая из большого количества мелких зерен, затвердевала, вероятно, при большом переохлаждении. Стекло образуется тогда, когда переохлаждение настолько велико, что скорость кристаллизации практически равна нулю. Различные структуры в различных материалах могут образовываться и при одинаковой степени переохлаждения. Степень переохлаждения, при которой затвердевает магма, сильно зависит от скорости, с которой отводится теплота из магмы, а это в свою очередь зависит от таких факторов, как средняя температура вмещающих пород, их теплопроводность, размер магматического тела и его положение в земной коре.