
- •Содержание
- •Введение
- •Внутренняя энергия
- •Обратимые процессы
- •Энтропия
- •Правило фаз
- •Устойчивость
- •Принцип Лешателье (теорема торможения)
- •Механизм реакций
- •Диффузия
- •Скорость образования новых фаз
- •Температурный коэффициент скорости реакции
- •Модуль I Магматические горные породы
- •Тема 1. Магма и кристаллизация магматических расплавов Лекция 1. Общие понятия о магме
- •1.1. Строение Земли
- •1.2. Природа магмы
- •1.3. Температура магм
- •1.4. Процесс охлаждения магмы
- •Лекция 2. Родоначальные магмы
- •2.1. Природа и происхождение ультраосновной магмы
- •Серпентинизация перидотитов
- •Между 500 и 625 ºС - оливин→тальк;
- •Между 625 и 800 ºС – оливин→энстатит→тальк;
- •Выше 800 ºС - оливин→энстатит.
- •Плавление природных перидотитов и варианты моделей плавления
- •2.2. Происхождение базальтовой магмы
- •2.3. Происхождение гранитной магмы
- •Лекция 3. Причины разнообразия магматических пород
- •3.1. Магматическая дифференциация
- •3.2. Ассимиляция
- •3.3. Гибридизация магмы
- •3.4. Смешение магм
- •3.5. Условия кристаллизации магмы
- •Лекция 4. Общие закономерности кристаллизации магмы
- •4.1. Кристаллизация по закону эвтектики
- •Диаграмма кристаллизации по закону эвтектики в системе диопсид-анортит
- •4.2. Кристаллизация по закону перитектики
- •Диаграмма кристаллизации по закону перитектики в системе форстерит-кремнезем
- •4.3. Кристаллизация по закону непрерывного реакционного взаимодействия (в системах с твердыми растворами)
- •Диаграмма кристаллизации с образованием твердых растворов в системе альбит-анортит
- •4.4. Влияние летучих компонентов на кристаллизацию магмы
- •Образование зонального строения плагиоклазов
- •4.5. Закономерности парагенетических ассоциаций и последовательность выделения минералов
- •4.6. Реакционные ряды минералов
- •Последовательность кристаллизации минералов (по Боуэну)
- •Тема 2. Характерные особенности и классификация магматических пород Лекция 5. Вещественный состав магатических горных пород
- •5.1. Химический состав магматических горных пород
- •5.2. Петрохимические пересчеты
- •Нормативный метод Кросса, Иддингса, Пирсона и Вашингтона (cipw)
- •Нормативно-молекулярный метод п. Ниггли
- •Метод а.Н. Заварицкого
- •5.3. Минералогический состав магматических пород
- •Разделение минералов по их значению в магматической породе
- •Разделение минералов по происхождению
- •Лекция 6. Краткий обзор главных породообразующих минералов магматических пород
- •6.1. Полевые шпаты
- •Плагиоклазы
- •Щелочные (калиево-натриевые) полевые шпаты
- •6.2. Кварц и некоторые модификации SiO2
- •6.3. Фельдшпатоиды
- •Нефелин
- •Содалит и канкринит
- •6.4. Оливин
- •6.5.Пироксены
- •Ромбические пироксены
- •Моноклинные пироксены
- •6.6. Амфиболы
- •Обыкновенная роговая обманка
- •Базальтическая роговая обманка
- •6.7. Слюды
- •Мусковит
- •6.8. Рудные минералы
- •6.9. Акцессорные минералы
- •6.10.Вторичные минералы
- •6.11. Количественно-минеральный состав и систематика магматических пород
- •Лекция 7. Формы залегания магматических горных пород и внутреннее строение интрузивных и экструзивных тел
- •7.1. Экструзивные тела
- •7.2. Интрузивные тела
- •Согласные интрузивные тела
- •Несогласные (секущие) тела
- •7.3. Внутреннее строение экструзивных и интрузивных тел
- •8.1. Структуры магматических пород
- •Кристаллографический габитус главных минералов
- •Идиоморфизм и степень идиоморфизма
- •Закономерные срастания, прорастания и включения
- •Полнокристаллические структуры
- •Неполнокристаллические структуры
- •Скрытокристаллические (криптокристаллические) структуры
- •Стекловатые (гиалиновые) структуры
- •Вулканокластические (пирокластические) структуры
- •8.2. Текстуры магматических пород
- •Разделение текстур по ориентировке составных частей породы в пространстве
- •Разделение текстур по характеру заполнения пространства
- •Лекция 9. Классификация и номенклатура магматических пород
- •9.1. Особенности интрузивных пород и их классификация
- •9.2. Особенности эффузивных пород и их классификация
- •9.3. Особенности жильных (гипабиссальных) пород и их классификация
- •Асхистовые породы
- •Диасхистовые породы
- •Тема 3. Главные типы магматических пород Лекция 10. Гипербазиты (ультраосновные породы, группа перидотита)
- •10.1. Интрузивные породы
- •Оливиниты
- •Перидотиты
- •Пироксениты
- •Горнблендиты
- •10.2. Гипабиссальные породы
- •10.5. Генезис гипербазитов
- •Лекция 11. Базиты (мафиты, группа габбро-базальтов)
- •11.1. Интрузивные породы
- •11.2. Жильные (гипабиссальные) породы
- •Асхистовые породы, связанные с интрузивными телами
- •Диасхистовые породы, связанные с интрузивными телами
- •Гипабиссальные породы, залегающие независимо от интрузивных тел
- •11.3. Эффузивные породы
- •Базальты
- •Эффузивные долериты
- •Базальтовые порфириты и эффузивные диабазы
- •Спилиты
- •Вариолиты
- •11.4. Распространенность базитов и связанные с ними полезные ископаемые
- •11.5. Генезис базитов
- •Расслоенные (псевдостратифицированные) интрузии
- •Докембрийская ассоциация анортозитов
- •Эффузивные ассоциации основных пород
- •Лекция 12. Среднекремнекислые породы известково-щелочного ряда (группа диоритов-андезитов)
- •12.1. Интрузивные породы
- •Диориты
- •Кварцевые диориты
- •12.2. Жильные (гипабиссальные) породы
- •Асхистовые породы
- •Диасхистовые породы
- •12.3. Эффузивные породы
- •Андезиты
- •Андезитовые порфириты
- •12.5. Генезис среднекремнекислых пород
- •Лекция 13. Кремнекислые породы (группа гранитов-риолитов гранодиоритов-дацитов)
- •13.1. Интрузивные породы
- •Нормальные граниты
- •Гранодиориты
- •Щелочные граниты
- •Чарнокиты
- •13.2. Жильные (гипабиссальные) породы
- •Асхистовые породы
- •Диасхистовые породы
- •13.3. Эффузивные породы
- •Кайнотипные породы
- •Палеотипные породы
- •Афировыеые породы
- •13.4. Распространенность кремнекислых пород и связанные с ними полезные ископаемые
- •13.5. Генезис кремнекислых пород
- •Лекция 14. Среднекремнекислые субщелочные породы (группа сиенитов-трахитов)
- •14.1. Интрузивные породы
- •Нормальные сиениты
- •Щелочные сиениты
- •Условия залегания и происхождение
- •14.2. Гипабиссальные породы
- •14.3. Эффузивные породы
- •Трахиты и трахитовые порфиры
- •Трахибазальты
- •Трахиандезиты
- •Трахириолиты
- •Кератофиры
- •Условия залегания и происхождение
- •14.4. Полезные ископаемые
- •Лекция 15. Среднекремнекислые щелочные породы (группа нефелиновых сиенитов-фонолитов)
- •15.1. Интрузивные породы
- •15.2. Гипабиссальные породы
- •15.3. Эффузивные породы
- •15.4. Полезные ископаемые
- •Лекция 16. Группа щелочных габброидов-базальтоидов
- •16.1. Интрузивные породы
- •16.2. Гипабиссальные породы
- •16.3. Эффузивные породы
- •16.4. Полезные ископаемые
- •Лекция 17. Несиликатные магматические породы
- •Лекция 18. Вулканокластические породы
- •18.1. Эффузивно-обломочные породы
- •18.2. Эксплозивно-обломочные (пирокластические) породы
- •18.3. Осадочно-вулканокластические породы
- •Проектное задание к модулю I
- •Тест рубежного контроля к модулю I
- •Модуль II Метаморфические горные породы
- •Тема 1. (Лекция 1) метаморфизм и его признаки
- •1.1. Факторы метаморфизма
- •1.2. Типы метаморфизма
- •Тема 2. (Лекция 2.) состав и строение метаморфических пород
- •2.1. Состав метаморфических пород
- •2.2. Фации метаморфизма
- •2.3. Текстура метаморфических пород
- •2.4.Реликтовые текстуры и структуры, унаследованные от осадочных пород
- •2.5. Реликтовые текстуры и структуры, унаследованные от магматических пород
- •2.6. Реликтовые текстуры и структуры, унаследованные от метаморфических пород
- •2.7. Кристаллобластовая структура и кристаллобластический ряд
- •2.8. Структуры динамометаморфизма
- •Тема 3. (Лекция 3.) принципы классификации метаморфических горных пород
- •Тема 4. Главные типы метаморфических пород Лекция 4. Катакластический метаморфизм
- •Лекция 5. Автометаморфизм
- •5.1. Автометаморфизм ультраосновных пород
- •5.2. Автометаморфизм основных и средних магматических пород
- •5.3. Автометаморфизм кислых магматических пород
- •5.4. Продукты гидротермального метаморфизма
- •Гидротермальный метаморфизм эффузивных пород
- •Лекция 6. Контактовый метаморфизм
- •6.1. Геологические условия залегания контактово-метаморфических пород
- •6.2. Общие свойства роговиков
- •6.3. Главные типы контактово-метаморфических пород
- •6.4. Фации контактового метаморфизма
- •Лекция 7. Региональный метаморфизм
- •7.1. Фации регионального метаморфизма
- •7.2. Ступени регионального метаморфизма
- •7.3. Ряды метаморфических пород
- •Метаморфические породы, возникшие за счет магматических пород
- •7.4. Полезные ископаемые, связанные с регионально-метаморфическими породами
- •Лекция 8. Ультраметаморфизм
- •Тема 5. (Лекция 9) метасоматиты
- •Основные типы метасоматоза
- •Проектные задания к модулю II
- •Тест рубежного контроля к модулю II
- •Список литературы
Диаграмма кристаллизации по закону перитектики в системе форстерит-кремнезем
Рис. 4.2
При кристаллизации расплава еще более богатого кремнеземом кристаллизация начнется с выделения кристаллов кристобалита.
Рассмотренный случай очень важен для петрологии, так как иллюстрирует перитектические реакционные соотношения между оливином и ромбическим пироксеном. Реакционные каемки ромбического пироксена вокруг оливина в магматических породах наблюдаются постоянно. Они образуются в том случае, либо когда перитектическая реакция не доходит до конца, либо в результате полного израсходования кремнезема в расплаве, либо в результате резкого изменения температуры, когда выделившиеся кристаллы оливина не успевают прореагировать с расплавом и ромбический пироксен начнет кристаллизоваться из расплава и нарастать на остатки зерен оливина. Реакционные каемки бывают не только вокруг зерен оливина. На кристаллах ромбического пироксена можно видеть каемки моноклинного пироксена, образующиеся в результате не дошедшей до конца реакции между кристаллами ромбического пироксена и расплавом. В реакционных соотношениях находятся моноклинный пироксен и роговая обманка. Реакция кристаллов моноклинного пироксена с расплавом усложняется участием в ней воды. В реакционных соотношениях находятся роговая обманка и биотит. Таким образом, устанавливается определенный прерывно-реакционный ряд цветных минералов: оливин→магнезиальный пироксен→известково-магнезиальный пироксен→амфибол→биотит.
В ходе кристаллизации магмы отдельные члены этого ряда могут выпасть вследствие резкой смены условий. Каемки амфибола вокруг оливина будут свидетельствовать о таком неравновесном состоянии системы в процессе кристаллизации. При нормальном ходе кристаллизации магмы цветные минералы, выделившиеся в первые стадии процесса, полностью исчезают, сменяясь другими. Отсюда понятно, почему в порфировых вкрапленниках эффузивных пород цветной минерал обычно другой, чем тот, который присутствует в соответствующих интрузивных породах. В андезитах во вкрапленниках находятся обычно пироксены, а диоритах – роговая обманка.
Кристаллизация с образованием инконгруэнтно плавящегося соединения имеет место и для некоторых салических минералов. Так кристаллизуется система лейцит-кремнезем, в которой образуется ортоклаз, плавящийся инконгруэнтно. Температура кристаллизации лейцита – 1686 ºС, а температура преобразования его в ортоклаз – 1170 ºС. Этот процесс объясняет невозможность совместного нахождения фельдшпатоидов и кварца. Подобные реакции могут происходить и в многокомпонентной системе.
4.3. Кристаллизация по закону непрерывного реакционного взаимодействия (в системах с твердыми растворами)
Большинство минералов магматических пород представляют собой твердые растворы, то есть – совершенную изоморфную смесь двух или более компонентов. Плагиоклазы – изоморфная смесь альбита и анортита, щелочные полевые шпаты – калиевого полевого шпата и альбита, оливин – форстерита и фаялита и т.д. Поэтому кристаллизация расплавов, из которых образуются твердые растворы, имеет важное значение. В таких расплавах кристаллизация идет по закону непрерывного реакционного взаимодействия. Особенности кристаллизации по этому закону следующие: 1) в процессе кристаллизации состав выделившихся твердых кристаллов непрерывно изменяется; 2) температура определяет не только количественное соотношение выделившихся кристаллов и расплава, но и состав твердой фазы; 3) между выделившимися кристаллами и расплавом в течение всего процесса кристаллизации имеет место непрерывное реакционное взаимодействие, в результате которого изменяется состав расплава и твердой фазы; 4) прибавление к легкоплавкому компоненту более тугоплавкого может вызвать повышение температуры начала кристаллизации расплава смеси; 5) температура начала кристаллизации, состав первых кристаллов твердой фазы, а также температура конца кристаллизации, состав последних порций расплава и состав образовавшихся твердых кристаллов зависит исключительно от состава смеси.
Рассмотрим процесс кристаллизации в очень важной системе альбит-анортит (рис. 4.3). Температура плавления анортита – 1550 ºС. Прибавление альбита постепенно понижает температуру начала кристаллизации расплава смеси. Температура плавления альбита – 1100 ºС. Небольшое прибавление аноритта сразу же повышает температуру начала кристаллизации расплава смеси. Так расплав, содержащий 20% анортита и 80% альбита, начнет кристаллизоваться при температуре 1350 ºС. Верхняя кривая на рисунке характеризует температуру начала кристаллизации и состав расплава, а нижняя кривая – температуру конца кристаллизации и состав твердой фазы.
Из расплава, содержащего 40% альбита и 60% анортита при температуре 1475 ºС начнут выделяться кристаллы плагиоклаза, номер которого будет 87. При понижении температуры состав расплава будет изменяться в сторону обогащения альбитом, но и состав плагиоклаза тоже будет обогащаться альбитом. При температуре 1425 ºС кристаллов плагиоклаза и расплава будет поровну. Номер плагиоклаза будет 78, а расплав будет содержать 58% альбита и 42% анортита. При температуре 1350 ºС в равновесии будут уже кристаллы плагиоклаза № 65 в количестве 85% и 15% расплава, содержащего всего 25% анортита. Количество расплава с понижением температуры непрерывно уменьшается и при 1325 ºС уменьшится до 0. Номер плагиоклаза станет 60. Состав последних порций расплава будет содержать 80% альбита и 20% анортита. Таким образом, кристаллизация данного расплава закончится при температуре 1325 ºС.
При нормальном ходе кристаллизации состав расплава и состав твердых кристаллов изменяется непрерывно. Это возможно только при достаточно медленном остывании, когда реакция доходит до конца. При кристаллизации магмы в глубинных условиях плагиоклаз, выделившийся в