
- •Содержаhие
- •2. Классические математические
- •3. Стохастические модели
- •4.4. Имитация случайных событий…………………..… 78
- •5. Обработка результатов
- •6. Моделирование вероятностных
- •7. Модели систем
- •8. Алгоpитмизация пpоцеccов
- •9. Унифицированный
- •Введение
- •1. Концепция моделирования
- •1.1. Понятие модели
- •1.2. Концепции определения моделей
- •2. Классические математические модели
- •2.1. Примеры моделей в виде дифференциальных уравнений
- •2.2. Классические модели в виде дифференциальных уравнений
- •2.3. Инерционные модели
- •2.4. Модели на основе передаточных функций
- •2.5. Конечные автоматы
- •3. Стохастические модели объектов
- •3.1. Математические модели случайных процессов
- •3.2. Классификация моделей случайных процессов
- •3.3. Модели марковских процессов
- •4. Имитация случайных событий
- •4.1. Понятие статистического моделирования
- •4.2. Датчики случайных чисел
- •4.3. Проверочные тесты
- •4.4. Имитация случайных событий
- •4.5. Имитация непрерывных случайных величин
- •4.6. Имитация марковского процесса
- •5. Обработка результатов моделирования на эвм
- •5.1. Выбор числа опытов
- •5.2. Значимость оценки
- •5.3. Формулы и алгоритмы для оценки результатов моделирования
- •6. Моделирование вероятностных автоматов
- •6.1. Аналитическое определение вероятностных автоматов
- •6.2. Табличное задание функций переходов и выходов
- •6.3. Имитационное моделирование вероятностных автоматов
- •7. Модели систем массового обслуживания
- •7.1. Общие сведения
- •7.2. Модель входного потока заявок и времени обслуживания
- •7.3. Модель Эрланга
- •7.4. Исследование модели пуассоновского процесса с помощью производящих функций
- •7.5. Модель для определения времени задержки в виде интегро-дифференциальных уравнений Линди-Такача-Севастьянова
- •7.6. Имитационное моделирование одноканальной смо
- •7.7. Имитационные модели многофазных смо
- •7.8. Имитационные модели многоканальных смо
- •7.9. Алгоритмизация имитационной модели смо произвольной структуры
- •8.1. Моделиpующие алгоpитмы
- •9. Унифицированный язык моделирования uml
- •9.1. Основные компоненты
- •9.2. Понятия и компоненты
- •9.3. Диаграммы вариантов использования
- •9.4. Диаграммы классов
- •Вертикальная координата : : Подвеска : : Машина
- •9.5. Типы связей между классами
- •9.6. Расширения понятия класса в uml
- •9.7. Связи между объектами
- •9.8. Диаграммы взаимодействия
- •9.9. Диаграммы состояний
- •9.10. Диаграммы деятельностей
- •10. Объектно-ориентированное моделирование
- •10.1. Определение объекта
- •10.2. Наследование
- •10.3. Полиморфизм
- •10.4. Типы данных и пакеты
- •Библиографический список
- •Аналитические и имитационные модели
3.3. Модели марковских процессов
Наибольшее распространение в теории систем, как вероятностная схема описания, получили марковские процессы, представляющие собой типичную вероятностную модель «без последействия».
Представим себе систему, которая может находиться в разных состояниях. Возможные состояния образуют множество Х, называемое фазовым пространством. Пусть система эволюционирует во времени. Состояние системы в момент времени t обозначим через хt. Если хtB, где BХ, то будем говорить, что система в момент времени t находится во множестве B. Предположим, что эволюция системы носит стохастический характер, т.е. состояние системы в момент времени t не определяется однозначно через состояние системы в моменты времени s, предшествующие t, где s<t, а является случайным и описывается теоретико-вероятностными законами.
Пусть Р(s,х,t,B) - вероятность события хtB (s<t), при условии, что хs=х. Функцию Р(s,х,t,B) называют вероятностью перехода рассматриваемой системы. Под системой без последействия понимают систему, для которой вероятность попадания в момент времени t во множество B, при полностью известном движении системы до момента времени s (s<t), по-прежнему равна Р(s,х,t,B) и, таким образом, зависит только от состояния системы в последний момент времени.
Обозначим через Р(s,х,u,y,t,B) условную вероятность события хtB при гипотезах хs=х, хu=y (s<u<t). В соответствии с общими свойствами условных вероятностей имеет место равенство
. (3.3)
Для системы без последствия естественно предположить, что
Р(s,х,u,y,t,B)=Р(u,y,t,B).
Тогда равенство (3.3) примет вид
. (3.4)
Соотношение (3.4) называется уравнением КолмогороваЧепмена. Это уравнение определяет модель марковского процесса.
Пусть {Х,B}-некоторое измеримое пространство. Функцию Р(х,B), хХ, BB, удовлетворяющую условиям:
а) Р(х,B) при фиксированном х является мерой на B и Р(х,Х)=1;
б) при фиксированном B Р(х,B) является B - измеримой функцией от х будем называть стохастическим ядром.
Пусть I - некоторый конечный или бесконечный полуинтервал (отрезок). Семейство стохастических ядер {Рst(х,B)=Р(s,х,t,B), s<t, (s,t)II}, удовлетворяющих уравнению Колмогорова-Чепмена (3.4), будем называть марковским семейством стохастических ядер.
Определение. Моделью марковского процесса в широком смысле называется совокупность следующих объектов:
- измеримое пространство {х, B};
- полуинтервал I (отрезок) действительной оси;
- марковское семейство стохастических ядер {Рst(х,B), s<t, (s,t)II}.
Семейство ядер Рst(х,B)=Р(s,х,t,B) называют вероятностью перехода марковского процесса, пространство {х,B} - фазовым пространством системы, точка множества I интерпретируется как моменты времени, а величина Рst(х,B)=Р(s,х,t,B) - как условная вероятность того, что система в момент времени t окажется во множестве B, если в момент времени s она находилась в точке х фазового пространства (s<t).
Дискретные случайные процессы, обладающие марковскими свойствами, называются цепями Маркова. В фазовом пространстве простейшими марковскими процессами являются процессы со счетным или конечным числом состояний. В фазовых пространствах выделяются следующие классы марковского процесса.
Скачкообразные процессы. Система, попадая в некоторую точку фазового пространства, проводит в ней случайный положительный отрезок времени, после чего скачком случайно попадает в другую точку фазового пространства.
Процессы с дискретным вмешательством случая. Эти процессы моделируют динамическую систему, траектории которой в случайные моменты времени терпят разрывы первого рода со случайными скачками.
Диффузионные процессы. Так называют процессы в конечномерных линейных пространствах, которые на малых промежутках времени ведут себя аналогично процессу броуновского движения.
Марковские процессы в конечномерном пространстве, аппроксимируемые на малых промежутках времени произвольным процессом с независимыми приращениям.