- •1.1. Вопросы организации изучения курса
- •1.2. Основные элементы геометрического моделирования
- •1.3. Условные обозначения и символы
- •1.4. Основы графического моделирования
- •1.5. Свойства ортогонального проецирования
- •1.6. Разновидности графических задач
- •2. Получение обратимого чертежа, задание на нём точки
- •3. Прямые линии на чертеже
- •3.1. Прямые частного положения на чертеже
- •3.2. Прямые общего положения на чертеже. Решение с ними метрических задач
- •3.3. Определение по чертежу взаимного положения прямой и точки
- •3.3. Определение по чертежу взаимного положения прямых линий
- •3.3.1. Определение по чертежу параллельных прямых линий (позиционные задачи)
- •3.3.2. Определение по чертежу пересекающихся прямых линий (позиционные задачи)
- •3.3.3. Определение по чертежу скрещивающихся прямых (позиционные задачи)
- •3.3.4. Определение по чертежу перпендикулярно скрещивающихся прямых (комплексные задачи)
- •3.3.5. Примеры решения задач о взаимном положении прямых
- •4. Кривые линии на чертеже
- •5. Плоские поверхности на чертеже
- •5.1. Разновидности плоских поверхностей
- •5.2. Определение по чертежу положения плоскостей относительно основных плоскостей проекций
- •5.3. Определение по чертежу принадлежности плоской поверхности её элементов
- •5.4.4. Пересечение плоских поверхностей на чертеже
- •5.4.5. Взаимно перпендикулярные прямая линия и плоскость общего положения на чертеже
- •5.4.6. Взаимно перпендикулярные плоскости общего положения на чертеже
- •6. Кривые поверхности на чертеже
- •6.1. Основные разновидности кривых поверхностей
- •6.2. Принадлежность кривой поверхности её элементов на чертеже
- •6.3. Пересечение кривой поверхности с прямой линией на чертеже (1.Гпз)
- •6.4. Пересечение кривой поверхности с плоскостью на чертеже (2.Гпз)
- •6.5. Взаимное пересечение кривых поверхностей на чертеже (2.Гпз)
- •7. Решение задач с преобразованием чертежа
- •7.1. Решающие положения прямых линий и плоскостей
- •7.2. Преобразование чертежа методом введения дополнительных ортогональных плоскостей проекций
- •8. Конструктивные задачи графического моделирования
- •8.1. Примеры конструктивных задач со множеством точек (вмт)
- •8.2. Примеры конструктивных задач со множеством прямых линий (вмп)
- •8.3. Примеры решения конструктивных задач
- •9. Построение развёрток геометрических фигур
- •9.1. Построение развёрток гранных поверхностей
- •9.2. Построение развёрток кривых поверхностей
- •10. Построение аксонометрических изображений
10. Построение аксонометрических изображений
Аксонометрическое проецирование обладает простотой построения изображения и его наглядностью.
«Аксонометрия» - с греческого языка означает «измерение по осям».
Суть этого метода проецирования (рис. 10.1): объект относят к некоторой системе координат, а затем вместе с координатной системой параллельно проецируют его на плоскость чертежа.
Рис. 10.1
При аксонометрическом проецировании изображение точек на чертеже, по существу, фиксирует их положение относительно центра О принятой системы координат. Это и делает такой чертёж обратимым.
Отрезки координатных осей при их проецировании на плоскость чертежа искажаются в зависимости от направления вектора проецирования по отношению к координатной системе, с одной стороны, и к плоскости чертежа, с другой. При этом угол между плоскостью чертежа и вектором проецирования может быть равен 90 (прямоугольная аксонометрия) или не равен 90 (косоугольная аксонометрия). В машиностроении принята прямоугольная аксонометрия.
В прямоугольной аксонометрии при проецировании отрезки осей координат изменяют свою длину. Поэтому вводят понятие «коэффициент искажения» оси, который определяют отношением длины проекции отрезка оси к его истинной длине:
K
=
;
K
=
;
K
=
.
В зависимости от соотношения коэффициентов искажения осей аксонометрические проекции могут быть:
изометрические (K = K = K );
диметрические (K =K K );
триметрические (K K K ).
В машиностроении (согласно рекомендациям ГОСТ 2.317-69) используют прямоугольную изометрию или прямоугольную диметрию.
В прямоугольной изометрии коэффициенты искажения по осям:
К = К = К = 0,82.
Однако, изометрическую проекцию строят без сокращения размеров по осям, что приводит к увеличению изображения против оригинала в 1,22 раза.
В прямоугольной диметрии коэффициенты искажения по осям:
К = К = 0,95; К = 0,47.
При реальном построении проекций рекомендуется принимать:
К = К = 1; К = 0,5,
при этом изображение увеличивается против оригинала в 1,06 раза.
Расположение осей координат в изометрии приведено на рис. 10.2, а в диметрии – на рис. 10.3.
Рис. 10.2
Рис. 10.3
Окружность в аксонометрии изображается в виде эллипса, который удобно строить с помощью параллелограмма, отображающего квадрат, описывающий окружность.
В изометрии (рис. 10.4) эллипсы на всех координатных плоскостях одинаковы между собой.
Рис. 10.4
В диметрии (рис. 10.5) на плоскостях XY и ZY эллипсы одинаковы между собой и отличаются от эллипса на плоскости XZ .
Рис. 12.5
Согласно рекомендациям ГОСТа при выполнении аксонометрических чертежей принято эллипсы заменять овалами. На рис. 10.6, 10.7 и 10.8 приведены способы построения овалов на координатных плоскостях при изометрии и диметрии.
Рис. 10.6
Рис. 10.7
Рис. 10.8
Техника построения аксонометрического изображения сводится к умению строить следующие элементы изображаемого объекта.
1.Точки строят по их координатам.
2.Линии строят по их точкам.
2.1.Прямые линии строят по 2-м точкам или по 1-й точке и известному направлению.
2.2.Кривые линии строят по многим точкам, достаточным для их качественного воспроизведения.
Примечание. Окружности, трансформируемые на чертеже в эллипс, строят с помощью овалов. Для того чтобы при построении аксонометрии иметь координаты точек изображаемого объекта (детали), предварительно строят обычный двух картинный чертёж детали и условно привязывают к ней систему координат.
Закрытые поверхности детали условно раскрывают путём выреза её части 2-мя взаимно перпендикулярными (координатными) плоскостями.
На рис. 10.9 приведён пример построения изометрии полой цилиндрической детали (втулки).
Рис. 10.9
