Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекционный курс по начертательной геометрии.doc
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
2.02 Mб
Скачать

9. Построение развёрток геометрических фигур

Развёртка – это плоская фигура, которую получают путём последовательного совмещения прямолинейных образующих развёртываемой фигуры с некоторой плоскостью.

Развёртки используют для раскроя листовых заготовок при изготовлении оболочковых изделий (химических аппаратов, ёмкостей, воздуховодов и т.п.).

9.1. Построение развёрток гранных поверхностей

Последовательность построения.

1.Определяют истинные величины всех сторон граней (для четырёхугольных граней дополнительно определяют их диагонали или высоты).

2.Используя полученные параметры граней, строят одну из них.

3.Последовательно к первой пристраивают все остальные грани.

Пример 1 (рис. 9.1). Построить развёртку пирамиды (S,ABC).

Рис. 9.1

Алгоритм построения.

1.Стороны основания пирамиды изображены на чертеже как отрезки горизонталей.

2.Рёбра SA и SC изображены на чертеже как отрезки фронталей.

3.Ребро SB определяем методом прямоугольника.

4.Развёртку начинаем с построения грани S A C . Далее пристраиваем с обеих сторон грани S A B и S C B .

Пример 2 (рис. 9.2). Построить развёртку призмы .

Рис. 9.2

Алгоритм построения.

1.Через точку С проведём секущую плоскость (1,С,2) параллельно горизонтальной плоскости проекций, т.е. перпендикулярно рёбрам. Все стороны треугольника сечения 1С2 являются высотами соответствующих граней призмы и определены на чертеже как отрезки горизонталей. Рёбра призмы тоже определены на чертеже как горизонтально проецирующие отрезки.

2.Строим грань A C C A и пристраиваем к ней последовательно все остальные грани.

9.2. Построение развёрток кривых поверхностей

Среди кривых поверхностей есть развёртываемые (у них образующие – прямые линии) и не развёртываемые поверхности (например, сфера).

Пример 1 (рис. 9.3). Построить развёртку цилиндра вращения с радиусом окружности основания r и высотой h .

Алгоритм построения.

Поверхность развёртываема. Её развёртка представляет собой прямоугольник высотой h и с основанием, равным длине окружности основания цилиндра (2 r).

Рис. 9.3

Пример 2 (рис. 9.4). Построить развёртку конуса вращения с радиусом окружности основания r и длиной образующей l .

Алгоритм построения.

Поверхность развёртываема. Развёртка конуса вращения представляет собой сегмент (вершина S) радиусом R = l и с углом при вершине сегмента = 2 r / R (рад).

Рис. 9.4

Пример 3 (рис. 9.5). Построить развёртку конуса общего вида , основание которого представляет собой горизонтально расположенную окружность m .

Алгоритм построения.

Поверхность развёртываема, но поскольку образующие конуса имеют переменную длину, то для построения развёртки используют приближённый метод, при котором развёртка конуса заменяется развёрткой вписанной n-гранной пирамиды.

Рис. 9.5

Пример 4 (рис. 11.6). Построить развёртку цилиндра общего вида , у которого плоскость одного основания (окружности) занимает горизонтальное положение, а плоскость другого – профильное.

Рис. 9.6

Алгоритм построения.

Поверхность развёртываема. Однако образующие цилиндра имеют переменную длину, поэтому развёртку строят приближенным методом, заменяя развёртку цилиндра развёрткой вписанной в цилиндр n - гранной призмы.