Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
А- Курс лекций - Шум ГТД 2008.doc
Скачиваний:
4
Добавлен:
01.05.2025
Размер:
57.43 Mб
Скачать

Лекция 7

Полуэмпирическая модель шума вентилятора. Газогенератор двигателя – энергетические характеристики основных источников излучения (камера сгорания и турбина).

Расчет шума вентилятора ТРДД

В основе метода расчета лежит соотношение для мощности акустического излучения с дискретным и непрерывным спектром, полученное с помощью размерного анализа решения (5.4) неоднородного волнового уравнения, пространственные и спектральные характеристики каждого вида излучения определяются по результатам экспериментального исследования шума отечественных вентиляторов ТРДД, а соотношения для расчета функций влияния представляют собой, как правило, аппроксимации результатов соответствующих теоретических и экспериментальных исследований.

. (7.1)

Общее решение неоднородного волнового уравнения, описывающего генерацию звука потоком в присутствии твердых границ, содержит три члена (7.1). Объемный интеграл соответствует источникам типа квадруполь, распределенным по объему поля течения вдали от жесткой границы. Второй интеграл описывает излучение источниками типа диполь, распределенными на обтекаемой поверхности S. Эти источники определяются пульсациями давления и вязкими напряжениями. Параметр характеризует скорость изменения импульса, которая равна нулю в случае жесткой или колеблющейся в собственной плоскости границы, а для случая перемещающейся границы этот параметр характеризует обмен количеством движения между близлежащими слоями жидкости. Параметр рi характеризует силу воздействия потока на жесткую границу.

Третий интеграл описывает акустическое излучение источниками монопольного типа, которые расположены на поверхности S и отражают собой вытеснение среды из области пространства, обусловленное движением поверхности S.

Поскольку в шуме вентилятора доминирует излучение дипольного типа, то при проведении размерного анализа уравнения (7.1) ограничимся рассмотрением только второго члена. Аэродинамическая нагрузка, действующая на лопатку, представляется в виде суммы статической и динамической составляющих.

Статическая составляющая характеризует осредненные значения подъемной силы и силы сопротивления лопатки, а динамическая - отражает все периодические и не- стационарные процессы воздействия потока на лопатки ротора и статора. Статическая составляющая нагрузки участвует в генерации излучения с дискретным спектром, а динамическая составляющая - излучения с дискретным и непрерывным спектром.

Рассмотрим изолированное рабочее колесо. Будем полагать, что гармонический шум на частоте следования лопаток обусловлен действием на среду осредненной составляющей силы реакции, изменяющейся по гармоническому закону, а широкополосный шум – пульсационной составляющей силы.

Для гармонической составляющей шума вращения мощность акустического излучения пропорциональна мощности излучения отдельного объема среды, через который периодически проходят лопатки РК. Мощность акустического излучения при прохождении одиночной лопатки РК через объем среды конечных размеров (W1) определяется при учете следующих соотношений пропорциональности:

~ ;

для периодического процесса ~ .

Для каждой составляющей излучения лопатки РК в статических условиях можно записать:

~ ; (7.2)

где f – характерная частота пульсации силы, равная частоте прохождения лопатки (для z лопаток: f = nz, n- скорость вращения РК ) через заданный объем среды, Ф – фактор направленности акустического излучения, R0 – расстояние от источника излучения до точки поля с давлением р(θ). Действующая на отдельную лопатку нагрузка равна:

~ .

С учетом того, что для ступени вентилятора n ~ Ut/d и S ~ d2 , получим выражение для мощности акустического излучения составляющих шума вращения ступени:

W ~ . (7.3)

Здесь U и Ut – эффективная и окружная скорости потока в периферийном сечении лопатки, S – площадь проходного сечения кольцевого канала ступени, сy – коэффициент подъемной силы.

Для расчетных режимов работы ступени вентилятора выполняется условие cy ≈ idem. При переходе на нерасчетные режимы работы изменяются условия обтекания лопатки, которые для линейного участка поляры cy = f (α) можно учесть следующим образом:

~ ~ ~ ,

где Мр и М – числа Маха эффективного потока в периферийном сечении лопатки РК на расчетном и текущем режимах работы. Учитывая, что

~ ,

и полагая, что после преобразования (6.10) получим следующее соотношение для мощности излучения:

.

Здесь Сij - коэффициенты пропорциональности, GВ - расход воздуха через ступень, Ua и Ut - осевая и окружная составляющие скорости потока в периферийном сечении лопатки, - средняя по сечению осевая составляющая скорости.

Помимо осредненных параметров течения, входящих в явном виде в последнее соотношение, мощности гармонической и широкополосной составляющих шума вращения элементов ступени РК и СА зависят еще от ряда параметров, важнейшими из которых являются степени неоднородности потока на входе в РК и СА и влияние решетки пилонов на изменение нагрузки, действующей на лопатки РК. В конечном итоге воздействие этих параметров проявляется в изменении величины динамической составляющей нагрузки на лопатках РК и СА и учитывается в расчетной модели с помощью корректирующих функций BV ( влияние атмосферной турбулентности), BS (влияние закромочных следов от впереди стоящей решетки), и Вn (влияние решетки пилонов), то есть:

, (7.4)

Здесь I =1,2 - индекс элемента ступени ( 1-РК, 2-СА) , j =1,2 - индекс нагрузки ( 1-статическая, 2- динамическая). Для шума вращения ступени имеем:

Рабочее колесо: W11 = C11 A1; W12 = C12 A1 Bn; (7.5)

Спрямляющий аппарат: W21 = C21 A1; W22 = C22 A1 BV BS;

Для мощности широкополосного шума ступени соотношения типа (6.12) имеют следующий вид:

W1m = C1m A1 BV Bn; W2m = C2m A1 BS; (7.6)

Для мощности акустического излучения ударных волн выражение может быть получено тем же способом, что и для шума вращения, если учесть, что появление скачков уплотнения на лопатках сопровождается резким изменением действующей на лопатку аэродинамической силы. В соответствии с линеаризованной теорией тонкого профиля в сверхзвуковом потоке, коэффициент волнового сопротивления профиля пропорционален:

~

Принимая во внимание, что характерная частота излучения равна f~n~ , а поверхность излучения S ~d2(1 - ), где - средний диаметр окружности рабочего колеса с М>1, после выполнения соответствующих подстановок в размерное уравнение (6.10) получим:

, (7.7)

где Срг - коэффициент пропорциональности.

Структура метода расчета спектра звукового давления, обуслов­ленного излучением РК и СА ступени, рассмотрена на рисунках 7.1 и 7.2.

Рисунок 7.1

Рисунок 7.2

Для слу­чая свободного звукового поля уровень звукового давления в третьоктавной полосе с центральной частотой “f” равен:

, (7.8)

где - безразмерная спектральная плотность мощности i-й составляющей акустического излучения, ПDi - произведение функций, учитывающих влияние эффектов, возникающих при распространении акустического излучения в каналах с потоком (конвекция, затухание, отсечка, экранирование ) на уровень шума ступени в дальнем поле.

Правомерность выражения уровня шума вентилятора через осредненные параметры ступени и комбинацию функций влияния Вi и Di была подтверждена экспериментально. Исследования шума отечествен­ных ТРДД с различной степенью двухконтурности показали, что произве­дению всех функций влияния

соответствует обобщенная экспериментальная зависимость (рисунок 6.6).

Входящие в соотношение (7.8) значения звуковой мощности (Wij) определяются с помощью выражений (7.4)-(7.7), характеристики нап­равленности источников излучения (Фi ) находятся на основе обобщен­ных экспериментальных данных по направленности составляющих шума вен­тилятора ТРДД, представленных на рисунках 6.4, 6.5, 6.7. В общем спектре акустичес­кого излучения двигателя спектры шума вращения и широкополосного шума вентилятора занимают всего несколько (до 5-и) третьоктавных полос в диапазоне 1250-3200Гц, а спектр шума ударных волн - до 4-х полос в пределах бЗО-1250Гц.

Это позволяет в расчетном методе ис­пользовать упрощенные аналитические представления огибающих спектров гармонических и широкополосной составляющих шума вращения в третьоктавных полосах частот, полученных на основе аппроксимации обобщенных экспериментальных зависимостей.

Для шума гармонических составляющих шума:

, (7.9)

для широкополосной составляющей шума вращения:

, (7.10)

- отношение центральных частот третьоктавных полос, в которые попадают частоты f и fсл.

Для шума ударных волн спектраль­ная плотность мощности принимается равной:

. (7.11)

Расчет величины проводится для условия: если ( ) > 4, то принимается +2.

Уровень звукового давления в третьоктавной полосе частот для шума ударных волн определяется как энергетическая сумма уровней отдельных гармоник, частоты которых располагаются внутри данной полосы.

Газогенератор двигателя

Шум турбины ТРДД

При полете самолета на режиме захода на посадку, когда двигатели работают на пониженных дроссельных режимах, акустическое излучение турбины ТРДД может оказывать влияние на общий уровень шума самолета в контрольной точке на местности. Это особенно заметно у самолетов с ТРДД с высокой степенью двухконтурности, у которых в выхлопном тракте газогенератора отсутствуют звукопоглощающие материалы.

В связи с этим изучение закономерностей и механизмов генерации шума турбиной ТРДД представляет определенный практический интерес. Шум турбины обычно исследуется в экспериментах двух типов: при работе турбины в системе двигателя либо при работе изолированной ступени.

В первом случае возможен комплексный учет влияния многочисленных параметров на суммарное акустическое поле турбины, однако затруднено независи­мое изменение этих параметров. Во втором случае мы имеем обратную картину. В связи с этим экспериментальные данные, как правило, не обладают необходимой степенью общности для построения надежных анали­тической или эмпирической методик расчета дальнего акустического поля турбин, работающих в системе ТРДД.

Известен ряд работ, посвященных излучению шума турбины. В результате исследований уста­новлено, что в дальнем акустическом поле ТРДД обычно бывает заметно излучение от последней ступени турбины, служащей для привода венти­лятора двигателя (рисунок 7.2-2). Спектр акустического излучения турбины, как и других лопаточных машин ТРДД, включает в себя дискретные и широкопо­лосную составляющие. Механизмы образования шума в ступенях турбины и вентилятора в целом сходны.

Рисунок 7.2-2

Однако в ступени турбины образование шума осложняется наличием поля пульсаций температуры потока. При этом важнейшим источником шума являются пульсации давления на поверхности лопаток рабочего колеса (РК) и соплового (направляющего) аппа­рата (СА), когда они взаимодействуют с турбулентными следами за ло­патками, расположенными выше по потоку. Существенно различаются ус­ловия распространения шума турбины и вентилятора. Распространение шума турбины вверх по потоку затруднено вследствие загромождения проходного сечения канала камерой сгорания и ступенями компрессоров и конвекции звука потоком.

На распространение звука вниз по потоку заметное влияние оказы­вают импеданс среза сопла в осевом направлении, пульсации скорости и температуры в потоке, градиенты скорости и температуры в зонах пере­мешивания газовой и воздушной струи ТРДД между собой и с окружающей воздушной средой.

Вследствие рефракции звуковых волн и дисперсии скорости звука в зонах турбулентного перемешивания потоков, которые приводят к неупорядоченным изменениям амплитуды и фазы колебаний вдоль фронта, происходит рассеяние энергии гармонических колебаний в области частот, прилегающих к частоте следования лопаток РК турбины.

В результате действия этих явлений излучение турбины на частоте следования лопаток РК проявляется в дальнем акустическом по­ле в вице "размытого" по частоте спектрального максимума. Измерения, выполненные на фирме Роллс-Ройс, показали, что непосредствен­но за турбиной в спектре пульсаций давления присутствует дискретная составляющая на частоте следования лопаток РК, однако после прохожде­ния звука через выхлопную струю в дальнем акустическом поле фиксировался лишь "размытый" по частоте максимум давления.

Экспериментально ус­тановлено, что интенсивности отдельных составляющих в спектре акустического излучения тур­бины зависят от взаимного расположения сопел внутреннего и наружного контуров ТРДД, от соотношения чисел сопловых и рабочих лопаток, от зак­рутки лопаток СА, от степени равномерности распределения лопаток РК по шагу, от величины осевого зазора на ступени и числа оборотов ротора и т.п.

Экспериментальное исследование акустического поля турбины, работающей в системе двигателя, для отечественных ТРДД с высокой степенью двухконтурности, имеющим раздельный выхлоп потоков внутреннего и наружного контуров и укороченный канал наружного контура (типа Д.36, Д.18Т), позволило уточнить некоторые из известных результатов.

Установлено, в частности, что в энергетическом плане влияние турбины на акустичес­кое поле двигателя не является столь заметным, как это имеет место в шумности двигателя. Это подтверждается представленным на рисунках 6.1, 6.2 узкополосными (∆f =25 Гц) спектрами звукового давления ТРДД Д.36 при различных режимах их работы. Турбина излучает энер­гию в достаточно узкой области, что следует из ограниченной протяженности области частот, где имеет место нарушение монотонности спада­ния спектральной плотности акустической энергии ТРДД при увеличений частоты.

Наблюдается рассеяние акустической энергии излучения турбины на частоте следования лопаток в прилегающую область частот, однако степень этого рассеяния зависит от типа двигателя, режима его работы и направления распространения звука относительно оси симметрии ТРДД. Так, например, у ТРДД Д.18Т перенос акустической энергии особенно сильно заметен при максимальном режиме работы, когда градиенты скорости и температуры в зонах смешения реактивных струй также достигают наибольших значений. В этом случае превышение уровня сос­тавляющих шума турбины над общим шумом двигателя в соседних частот них диапазонах составляет ~ 10 дБ, в то время как на дроссельном ре­ме (0,4N) превышение достигает величины ~ 20 дБ.

При низком дроссельном режиме работы двигателя Д.18Т наименьшее "размывание" энергии дискретной составляющей шума турбины отмечается в направлении θ = 110° (угол отсчитывается от оси двигателя со стороны входа в возду­хозаборник). Однако уже при изменении величины угла на ± 20° заметно сильное проявление переноса акустической энергии дискретной составляющей в прилегающую область частот.

Можно также отметить, что с увели­чением угла θ частота спектрального максимума турбины также воз­растает. Отмеченные эффекты обусловлены действием рефракции и дисперсии скорости звука в зоне смешения выхлопных струй.

У ТРДД типа Д.36 эффект "размыва" дискретной составляющей шума турбины в большей степени проявляется при дроссельном режиме работы двигателя (рисунок 6.2). Воз­можно это обусловлено тем, что ТРДД Д.36 является существенно более высокооборотным по сравнению с Д.18Т. Увеличение числа оборотов тур­бины вызывает возрастание турбулентности выхлопной струи и, как следствие, более сильный "размыв" энергии дискретной составляющей шума при дроссельных режимах работы двигателя.

Обобщенная характеристика направленности шума турбины в третьоктавных полосах частот, построенная для ТРДД с низкой степенью двухконтурности и общей камерой смешения потоков внутреннего и наружного контуров, показывает (рисунок 7.3), что максимум акустической энергии турбины приходит в дальнее поле в направлениях θ =120°. У ТРДД с высокой степенью двухконтурности, раздельным выхлопом потоков и укороченным каналом наружного контура максимум акустического излу­чения имеет место (рисунок 7.4) в направлениях θ =1200-130°.

Рисунок 7.3

Рисунок 7.4

Различие в характеристиках направленности обусловлено особенностями организаации выхлопа ТРДД разных типов. Эти данные в целом согласуются с результатами исследований шума отдельных турбинных ступеней и двигателей в целом, полученными за рубежом. Полученные обобщенные характеристики направленности акустического излучения могут использоваться в методиках расчета шума турбины.

Расчет шума турбины может быть выполнен по следующим формулам. Суммарный уровень звукового давления в направле­нии максимального излучения (θ=120°) равен:

(7.12)

Уровень дискретной составляющей излучения турбины на частоте следования ло­паток РК последней ступени в направлении максимума интенсивности излучения определяется как:

(7.13)

В приведенных формулах приняты следующие обозначения: - концевое число М в относительном движении на входе в рабочее колесо турбины; F - площадь проточной части на выходе из рабочего колеса; S - осевой зазор между СА и РК; b - хорда лопатки СА; R - расстояние от центра сопла до точки измерения шума; ∆T/T = - относительный перепад темпера­туры в турбине; πт* - степень понижения полного давления в турбине; γ- показатель адиабаты.

Рассеяние звуковой энергии, излучаемой турбиной, в слое смешения реактивной струи с окружающей средой, вызывает уменьшение уровня дискретной составляющей шума турбины в дальнем акустическом поле на величину, которая для ТРДД с раздельным выхлопом потоков из внутреннего и наружного контуров приближенно может быть оценена с помощью соотношения:

, (7.14)

где Uc – cскорость истечения реактивной струи, D – диаметр сопла наружного контура двигателя, l- расстояние между срезами сопел каналов внутреннего и наружного контуров ТРДД.

Для снижения шума внутренних источников не­обходимо улучшать аэроди­намику внутренних каналов двигателя, снижать неста­ционарность потоков. Весь­ма эффективным средством снижения этого шума явля­ется размещение в выхлоп­ных трактах двигателя зву­копоглощающих конструк­ций. Кроме того, значительного снижения «внутреннего» шума мож­но добиться с помощью экранирования его крылом, оперением и фюзеляжам самолета.

Внутренние источники шума

К внутренним источникам шума газотурбинного двигателя относятся все источники акустического излучения, расположенные в тракте газогенератора, за исключением вентилятора, компрессора, турбины и реактивной струи.

Камера сгорания создает широкополосный низкочастотный шум, обусловленный турбулентным горением и резонансными яв­лениями в камере сгорания, а также взаимодействием потока на выходе из камеры сгорания с лопатками турбины.

Обтекание потоком различных конструкций в тракте двигателя также приводит к возникновению широкополосного шума. Шум этих источников испытывает дифракцию на кромке сопла, рас­сеяние и преломление при пересечении пограничного слоя струи, и направлен преимущественно в заднюю полусферу двигателя.

Дополнитель­ный шум образуется в результате взаимодействия с соплом вну­треннего контура потока, обладающего высокой степенью турбу­лентности, сохраняющего остаточную закрутку и содержащего крупномасштабные неоднородности.

Для двигателей с большой степенью двухконтурности главным внутренним источником шума является камера сгорания. Шум ка­меры сгорания возникает в процессе горения вследствие воздействия тур­булентных пульсаций потока на локальную скорость химической реакции и прохождения неоднородностей энтропии через области с градиентами средних скоростей и статического давления. Наи­более полные данные имеются о шуме открытого турбулентного пламени, то есть пламени, находящемся в таких условиях, когда влиянием отраженных звуковых волн на пламя и на результаты измерений шума можно пренебречь.

Характерным отличием шума пламени, расположенного в огра­ниченном объеме, от шума открытого пламени является присутствие дискретных составляющих в спектре шума горения, частоты которых соответствуют колебаниям газа в данном объеме.

Уровень шума в камере сгорания может быть оценен по известным харак­теристикам шума открытого пламени, если известны акустические характеристики камеры сгорания и можно пренебречь воздей­ствием отраженных от стенок звуковых волн на процесс горения. Шум камеры сгорания ослабляется при переходе через тур­бину, и это ослабление приближенно можно оценить с помощью соотношения

(7.14)

где φ= (рс)1 /(рс)2 - отношение акустических сопротивлений на входе в турбину и на выходе из нее. Характерные значения φ из­меняются для двигателей от трех до восьми, поэтому ослабление, связанное с прохождением шума горения через турбину, равно 1...4 дБ. Примерно в два раза большую величину имеет ослабление, связанное с переходом звуковых волн из камеры сгорания в кольцевой канал перед турбиной.

Повышенный уровень турбулентности потока, выходящего из камеры сгорания, а также турбулентность, образовавшаяся в первых ступенях турбины, приводят к росту широкополосного шума, генерируемого последними ступенями турбины. Кроме того, флюктуации температуры, возникающие в камере сгорания и распространяющиеся через области больших градиентов давления и скоростей потока, вызывают образование низкочастотного сплош­ного шума. Интенсивность этого шума сильно зависит от величины флюктуации температуры, масштабов корреляции, перепада статического давления на лопаточном венце турбины.

При излучении шум внутренних источников претерпевает зна­чительную трансформацию. Часть акустической энергии отражается от среза сопла двигателя. Когда акустическая волна проходит через турбулентную зону смешения, происходят локальные изменения скорости ее распро­странения, что может быть связано с изменениями скорости звука, вызванными пульсациями температуры, и случайными отражением и конвекцией звуковой волны турбулентными вихрями. Оба эф­фекта приводят к случайным изменениям фазы вдоль фронта вол­ны и увеличивают рассеяние дискретной составляющей шума.

Нормированный третьоктавный спектр уровней шума камеры сгорания имеет максимум в диапазоне частот 300.. .500 Гц (рисунок 7.5); а максимум интенсивности излуче­ния отмечается в направлении θ=120° (рисунок 7.6). Угол направленности θ отсчитывают от входа в двигатель, а начало координат совпадает с центром сопла.

Рисунок 7.5

Рисунок 7.6

Экспериментально установлена относительно слабая зависимость фактора направленности излучения от частоты.

Расчет шума внутренних источников может быть, выполнен по формулам, полученным в результате обобщения эксперимен­тальных данных. Уровень мощности акустического излучения, генерируемого каме­рой сгорания, может быть определен с помощью следующего соотношения:

, (7.15)

где G3 — расход воздуха, кг/с; (T4*— Т3*) - перепад температур в камере сгорания; (Т4* —T8*) - перепад температур на турбине (T4* — полная температура на входе в турбину, T8* - на выходе); p3, T3* - соответственно полное давление и температура воздуха, входящего в камеру сгорания; индекс «0» соответствует стандарт­ным атмосферным условиям.

Суммарный по спектру излучения уровень звукового давления (Lc) определяется по известным уровню мощности излучения (LW) и фактору направленности (10lgФ)

;

(7.16)

где дБ – для случая излучения в сферу, и дБ – для случая излучения в полусферу. Фактор направленности акустического излучения (10lgФ) определяется с помощью обобщенной графической зависимости, приведенной на рисунке 7.6.

Спектр звукового давления в третьоктавных полосах частот рассчитывается на основе обобщенного спектра звукового давления (рисунок 7.5) в соответствии с соотношением

,

где - спектральный уровень звукового давления в третьоктавной полосе с центральной частотой fi в направлении θj , Lсj – суммарный уровень звукового давления для направления распространения звука “θj” , - ординаты обобщенного спектра звукового давления камеры сгорания .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]