
- •Часть 1
- •1. Задачи, решаемые электронной техникой, и элементы, необходимые для их решения
- •1.1. Электрические сигналы. Временное и спектральное представление
- •1.2. Усиление электрических сигналов
- •1.3. Модуляция сигналов
- •1.3.1. Амплитудная модуляция
- •1.3.2. Импульсно-кодовая модуляция
- •1.3.3. Широтно-импульсная модуляция
- •1.4. Фильтрация сигналов
- •1.5. Хранение и отображение информации
- •1.6. Преобразование электрической энергии
- •А) б) Рис. 1.21. Схема простейшего инвертора (а) и временная диаграмма напряжения в нагрузке (б) Основные результаты 1 главы
- •2. Математический аппарат описания электронных элементов
- •2.1. Описание нелинейных элементов
- •2.2. Линеаризация нелинейных уравнений
- •Линеаризованное уравнение нелинейного элемента
- •2.4. Частотный анализ линеаризованных цепей
- •2.5. Временной анализ линеаризованных цепей
- •Основные результаты 2 главы
- •3. Полупроводники – основа современной элементной базы электроники
- •3.1. Преимущества полупроводниковых элементов перед электровакуумными
- •3.2. Физические основы электропроводности полупроводников
- •3.3. Электропроводность беспримесного (собственного) полупроводника
- •3.4. Электропроводность примесных полупроводников
- •3.4.1. Донорная примесь
- •3.4.2. Акцепторная примесь
- •3.6. Инерционность р-п-перехода
- •3.6.1. Зарядная емкость р-п-перехода
- •3.6.2. Диффузионная емкость
- •3.7. Пробой р-п-перехода
- •3.7.1. Тепловой пробой
- •3.7.2. Электрический пробой
- •3.8. Математическая модель р-п-перехода
- •3.9. Переход металл-полупроводник
- •Основные результаты 3 главы
- •4. Многопереходные электронные элементы
- •4.1. Полупроводниковые триоды (биполярные транзисторы)
- •4.2. Активный режим работы биполярного транзистора
- •4.2. Статические характеристики биполярного транзистора для активного режима
- •4.3. Инерционность биполярного транзистора
- •4.4. Пробой коллекторного перехода
- •4.5. Пробой эмиттерного перехода
- •4.6. Нелинейная модель биполярного транзистора
- •4.7. Линеаризованная модель биполярного транзистора
- •4.8. Ключевой режим биполярного транзистора
- •4.9. Полевые транзисторы
- •4.10. Полевые транзисторы с управляющим р-п-переходом
- •4.12. Тиристоры
- •Д ля регулирования в течение каждой полуволны знакопеременного ис
- •Основные результаты 4 главы
- •5. Основы теории электронных усилителей
- •5.1. Общие положения
- •5.2. Обратная связь в усилительных устройствах
- •5.3. Операционные усилители (оу)
- •5.4. Усилители мощности
- •5.4.1. Линейные усилители мощности
- •5.4.2. Усилители мощности ключевого типа
- •6. Автогенераторы
- •Автогенераторы гармонических колебаний
- •7. Источники вторичного электропитания электронных устройств
- •7.1. Классическая схема вторичного источника (без преобразования частоты сети)
- •7.2. Вторичные источники с преобразованием частоты сети
- •7.3. Функциональные элементы вторичных источников электропитания
- •7.3.1. Преобразователи переменного напряжения
- •7.3.2. Стабилизаторы постоянного напряжения (спн)
- •Оглавление
- •Электроника
- •Часть 1 Электронная база, аналоговые функциональные устройства
7.3.2. Стабилизаторы постоянного напряжения (спн)
СПН обеспечивают стабильный уровень выходного напряжения источника питания при действии двух дестабилизирующих факторов - нестабильности входного напряжения и изменениях выходного (нагрузочного) тока.
СПН является принципиально нелинейным устройством, связь между выходным напряжением U2, входным U1 и выходным током I2 может быть представлена некоторой функциональной зависимостью
U2=F(U1, I2).
Линеаризуя это уравнение относительно некоторого номинального режима
U20, U10, I20,
получим уравнение для приращений
,
где
- коэффициент стабилизации;
(7.1)
-
выходное сопротивление.
Соотношения (7.1) являются основными для определения качества стабилизатора. Из (7.1) следует, что для идеального стабилизатора необходимо иметь
k, r220.
Различают два типа стабилизатора - параметрические и компенсационные. В параметрических СПН используются стабилизирующие свойства стабилизатора, в которых при изменении тока в режиме электрического пробоя в широких пределах напряжение остается практически неизменным.
Рис.
7.8. Расчетная
схема для
определения
параметров
параметрического
стабилизатора
Рис.
7.7. Схема
параметрического
СПН
Используя линеаризованные расчетные темы с учетом соотношений (7.1) - рис. 7.8, можно получить значения параметров
(7.2)
Требуемый коэффициент стабилизации согласно (7.2) можно обеспечивать за счет увеличения балластного резистора R0, хотя это приведет к снижению КПД стабилизатора.
Поэтому в качестве балластного элемента чаще всего используются нелинейные элементы с большим дифференциальным сопротивлением. Наиболее просто такая схема реализуется на полевом транзисторе (рис. 7.9).
Рис.
7.9. Схема
параметрического
СПН
с нелинейным
балластным
элементом
Поэтому параметрический СПН целесообразно использовать в системах, где ток нагрузки практически не меняется.
Рис.
7.10. Обобщенная схема СПН
компенсационного
типа
Рассматривая схему данного СПН как усилитель с глубокой обратной связью (VT - как выходной каскад усиления мощности), на вход которого подано постоянное напряжение U0, на основе свойств идеального операционного усилителя, запишем
(7.3)
Если U0=const, отношение R2/R1= const, то из (7.3) следует, что
U2=const
при действии любых дестабилизирующих факторов. Предельная стабильность выходного напряжения, кроме стабильности U0, и отношения R2/R1 определяется также температурным дрейфом смещения нуля ОУ. Параметры современных прецизионных ОУ позволяют обеспечить практически идеальный СПН.
В качестве опорного источника в принципе можно использовать параметрический стабилизатор с нелинейным балластным резистором. Однако, температурный дрейф, разброс напряжения стабилизации стабилитронов достаточно велик и в микросхемном исполнении чаще всего используются опорные источники, не содержащие стабилитронов. В этих источниках путем выбора соответствующих параметров схемы на его зажимах напряжение равно ширине запрещенной зоны кремния с очень высокой температурной стабильностью. Пример реализации такого источника приведен на рис. 7.11.
Рис.
7.11. Схема интегрального опорного
источника
без применения стабилитрона
За счет временного запаздывания сигнала обратной связи, вносимого фильтром Lф, Сф - усилитель рассогласования работает в режиме компаратора, вырабатывающего широтномодулированные импульсы управления регулирующим транзистором, который работает в ключевом режиме (выходное напряжение ниже нормы - транзистор открывается, выходное напряжение выше нормы - транзистор полностью запирается). Ключевому стабилизатору принципиально присущ пульсирующий характер выходного напряжения, который сводится к приемлемому уровню за счет высокой чувствительности компаратора.
Рис. 7.12. Ключевой
стабилизатор с адаптивной ШИМ
Микроминиатюризация электронных компонентов привела к ситуации, когда источник питания электронного устройства из-за громоздкого силового трансформатора по малогабаритным показателям существенно превышает само электронное устройство.
Разрешение этой ситуации достигается за счет преобразования частоты, в результате частота, на которой работает трансформатор, в сотни-тысячи раз превышает частоту первичного источника, а массо-габаритные размеры трансформатора уменьшаются в десятки-сотни раз.
Функционально законченные интегральные стабилизаторы позволяют получить чрезвычайно высокий уровень стабильности выходных напряжений источника питания.
Максимальными потерями обладают стабилизаторы ключевого типа, реализующие принцип ШИМ.