
- •Часть 1
- •1. Задачи, решаемые электронной техникой, и элементы, необходимые для их решения
- •1.1. Электрические сигналы. Временное и спектральное представление
- •1.2. Усиление электрических сигналов
- •1.3. Модуляция сигналов
- •1.3.1. Амплитудная модуляция
- •1.3.2. Импульсно-кодовая модуляция
- •1.3.3. Широтно-импульсная модуляция
- •1.4. Фильтрация сигналов
- •1.5. Хранение и отображение информации
- •1.6. Преобразование электрической энергии
- •А) б) Рис. 1.21. Схема простейшего инвертора (а) и временная диаграмма напряжения в нагрузке (б) Основные результаты 1 главы
- •2. Математический аппарат описания электронных элементов
- •2.1. Описание нелинейных элементов
- •2.2. Линеаризация нелинейных уравнений
- •Линеаризованное уравнение нелинейного элемента
- •2.4. Частотный анализ линеаризованных цепей
- •2.5. Временной анализ линеаризованных цепей
- •Основные результаты 2 главы
- •3. Полупроводники – основа современной элементной базы электроники
- •3.1. Преимущества полупроводниковых элементов перед электровакуумными
- •3.2. Физические основы электропроводности полупроводников
- •3.3. Электропроводность беспримесного (собственного) полупроводника
- •3.4. Электропроводность примесных полупроводников
- •3.4.1. Донорная примесь
- •3.4.2. Акцепторная примесь
- •3.6. Инерционность р-п-перехода
- •3.6.1. Зарядная емкость р-п-перехода
- •3.6.2. Диффузионная емкость
- •3.7. Пробой р-п-перехода
- •3.7.1. Тепловой пробой
- •3.7.2. Электрический пробой
- •3.8. Математическая модель р-п-перехода
- •3.9. Переход металл-полупроводник
- •Основные результаты 3 главы
- •4. Многопереходные электронные элементы
- •4.1. Полупроводниковые триоды (биполярные транзисторы)
- •4.2. Активный режим работы биполярного транзистора
- •4.2. Статические характеристики биполярного транзистора для активного режима
- •4.3. Инерционность биполярного транзистора
- •4.4. Пробой коллекторного перехода
- •4.5. Пробой эмиттерного перехода
- •4.6. Нелинейная модель биполярного транзистора
- •4.7. Линеаризованная модель биполярного транзистора
- •4.8. Ключевой режим биполярного транзистора
- •4.9. Полевые транзисторы
- •4.10. Полевые транзисторы с управляющим р-п-переходом
- •4.12. Тиристоры
- •Д ля регулирования в течение каждой полуволны знакопеременного ис
- •Основные результаты 4 главы
- •5. Основы теории электронных усилителей
- •5.1. Общие положения
- •5.2. Обратная связь в усилительных устройствах
- •5.3. Операционные усилители (оу)
- •5.4. Усилители мощности
- •5.4.1. Линейные усилители мощности
- •5.4.2. Усилители мощности ключевого типа
- •6. Автогенераторы
- •Автогенераторы гармонических колебаний
- •7. Источники вторичного электропитания электронных устройств
- •7.1. Классическая схема вторичного источника (без преобразования частоты сети)
- •7.2. Вторичные источники с преобразованием частоты сети
- •7.3. Функциональные элементы вторичных источников электропитания
- •7.3.1. Преобразователи переменного напряжения
- •7.3.2. Стабилизаторы постоянного напряжения (спн)
- •Оглавление
- •Электроника
- •Часть 1 Электронная база, аналоговые функциональные устройства
7. Источники вторичного электропитания электронных устройств
Поскольку основные функциональные устройства электронной техники (усилители, генераторы, логические элементы) являются по сути преобразователями электрической энергии, то источники электропитания являются важной составной частью любого электронного устройства, во многом определяющей энергетическую эффективность, массогабаритные показатели, надежность и стоимость всего устройства в целом.
Вторичными называются источники, полученные путем преобразования электрической энергии некоторого первичного источника (напряжения промышленной сети, аккумулятора, фотобатарей и т.п.).
Основным источником первичной энергии выступает промышленная сеть переменного тока, поэтому основное внимание будет уделено вторичным источникам, питаемым от “сети”.
7.1. Классическая схема вторичного источника (без преобразования частоты сети)
Структурная схема такого источника приведена на рис. 7.1.
Источник содержит трансформатор (Тр), преобразователь переменного напряжения в постоянное (Пр), стабилизатор постоянного напряжения (СТ).
Рис.
7.1. Структурная схема вторичного
источника
электропитания
без преобразования частоты сети
Преобразователь должен содержать нелинейные элементы, обеспечивающие преобразование двухполярного переменного напряжения в однополярное, и фильтр, выделяющий из спектра однополярного напряжения постоянную составляющую.
Стабилизатор обеспечивает требуемую стабильность выходного напряжения при вариациях как входного напряжения, так и тока нагрузки.
Основным недостатком рассматриваемой классической схемы вторичного источника является наличие трансформатора, работающего на низкой частоте (50 Гц, 60 Гц) сети.
Из теории электромагнитных устройств известно, что число витков первичной обмотки прямо пропорционально напряжению и обратно пропорционально частоте. Высокий уровень первичного напряжения (220В, 110В) и низкая частота приводят к необходимости (при имеющихся ферромагнитных сердечниках) большого числа витков (более тысячи).
При передаче достаточно большой мощности для исключения перегрева обмоток и достижения приемлемого КПД диаметр провода тоже должен быть достаточно большим. В результате требуемые размеры сердечника, необходимые для размещения обмоток, массогабаритные параметры трансформатора (с учетом веса медных проводов обмотки) получаются настолько большими, что приходят в явное противоречие с современными микроэлектронными компонентами. Во многих случаях масса и габариты такого трансформатора могут составлять более 90% от всего электронного устройства. Следует также отметить достаточно сложную технологию изготовления мощных низкочастотных трансформаторов, обусловливающих их высокую стоимость.
7.2. Вторичные источники с преобразованием частоты сети
Уменьшить габариты трансформатора, который в любом случае применяется для электрической развязки, можно за счет увеличения частоты питающего напряжения. С этой целью применяется промежуточное преобразование частоты сети.
Структурная схема источника с преобразованием частоты изображена на рис 7.2.
Рис.
7.2. Структурная схема вторичного
источника электропитания
с
преобразованием частоты сети
Габариты трансформатора уменьшаются почти пропорционально увеличению частоты и если низкочастотный трансформатор мог весить несколько килограмм, то высокочастотный (десятки кГц) - десятки грамм.
Для обеспечения высокого значения КПД инвертор выполняется на элементах, работающих в ключевых режимах, и представляет собой автогенератор прямоугольных импульсов.
Несмотря на существенное усложнение электронной части схемы, необходимость экранирования во избежание воздействия на окружающие устройства импульсных помех от инвертора, источники с преобразованием практически вытеснили классические схемы из современных электронных устройств.