
- •Часть 1
- •1. Задачи, решаемые электронной техникой, и элементы, необходимые для их решения
- •1.1. Электрические сигналы. Временное и спектральное представление
- •1.2. Усиление электрических сигналов
- •1.3. Модуляция сигналов
- •1.3.1. Амплитудная модуляция
- •1.3.2. Импульсно-кодовая модуляция
- •1.3.3. Широтно-импульсная модуляция
- •1.4. Фильтрация сигналов
- •1.5. Хранение и отображение информации
- •1.6. Преобразование электрической энергии
- •А) б) Рис. 1.21. Схема простейшего инвертора (а) и временная диаграмма напряжения в нагрузке (б) Основные результаты 1 главы
- •2. Математический аппарат описания электронных элементов
- •2.1. Описание нелинейных элементов
- •2.2. Линеаризация нелинейных уравнений
- •Линеаризованное уравнение нелинейного элемента
- •2.4. Частотный анализ линеаризованных цепей
- •2.5. Временной анализ линеаризованных цепей
- •Основные результаты 2 главы
- •3. Полупроводники – основа современной элементной базы электроники
- •3.1. Преимущества полупроводниковых элементов перед электровакуумными
- •3.2. Физические основы электропроводности полупроводников
- •3.3. Электропроводность беспримесного (собственного) полупроводника
- •3.4. Электропроводность примесных полупроводников
- •3.4.1. Донорная примесь
- •3.4.2. Акцепторная примесь
- •3.6. Инерционность р-п-перехода
- •3.6.1. Зарядная емкость р-п-перехода
- •3.6.2. Диффузионная емкость
- •3.7. Пробой р-п-перехода
- •3.7.1. Тепловой пробой
- •3.7.2. Электрический пробой
- •3.8. Математическая модель р-п-перехода
- •3.9. Переход металл-полупроводник
- •Основные результаты 3 главы
- •4. Многопереходные электронные элементы
- •4.1. Полупроводниковые триоды (биполярные транзисторы)
- •4.2. Активный режим работы биполярного транзистора
- •4.2. Статические характеристики биполярного транзистора для активного режима
- •4.3. Инерционность биполярного транзистора
- •4.4. Пробой коллекторного перехода
- •4.5. Пробой эмиттерного перехода
- •4.6. Нелинейная модель биполярного транзистора
- •4.7. Линеаризованная модель биполярного транзистора
- •4.8. Ключевой режим биполярного транзистора
- •4.9. Полевые транзисторы
- •4.10. Полевые транзисторы с управляющим р-п-переходом
- •4.12. Тиристоры
- •Д ля регулирования в течение каждой полуволны знакопеременного ис
- •Основные результаты 4 главы
- •5. Основы теории электронных усилителей
- •5.1. Общие положения
- •5.2. Обратная связь в усилительных устройствах
- •5.3. Операционные усилители (оу)
- •5.4. Усилители мощности
- •5.4.1. Линейные усилители мощности
- •5.4.2. Усилители мощности ключевого типа
- •6. Автогенераторы
- •Автогенераторы гармонических колебаний
- •7. Источники вторичного электропитания электронных устройств
- •7.1. Классическая схема вторичного источника (без преобразования частоты сети)
- •7.2. Вторичные источники с преобразованием частоты сети
- •7.3. Функциональные элементы вторичных источников электропитания
- •7.3.1. Преобразователи переменного напряжения
- •7.3.2. Стабилизаторы постоянного напряжения (спн)
- •Оглавление
- •Электроника
- •Часть 1 Электронная база, аналоговые функциональные устройства
6. Автогенераторы
Автогенераторы - это автономные источники периодических колебаний различной формы: гармонической, прямоугольной, пилообразной и т.д. Автогенераторы используются как источники тестовых сигналов для исследования электронных схем, для синхронизации работы сложных цифровых блоков, как источники опорных сигналов для запитки измерительных преобразователей неэлектрических величин в электрические.
Автогенератор, как и усилитель, является преобразователем энергии источника питания в энергию выходного периодического сигнала. Но, в отличие от усилителя, автогенератор является автономным преобразователем, когда параметры выходного сигнала определяются не входным сигналом (как у усилителя), а собственными параметрами автогенератора.
При проектировании автогенераторов решаются две главные задачи:
обеспечение условия для возникновения нарастающего во времени периодического колебания;
обеспечения стационарных (установившихся) параметров колебания - уровня и периода.
При возникновении колебаний, когда их уровень мал, автогенератор можно рассматривать как линейную систему. Для ограничения колебаний на стационарном уровне принципиально необходима нелинейность, поэтому определение стационарных параметров должно проводиться на основе анализа нелинейных дифференциальных уравнений автогенератора, что представляет собой достаточно сложную аналитическую задачу.
В силу существенно различного характера нелинейности используемых в автогенераторах гармонических и импульсных (релаксационных, разрывных) колебаний эти генераторы рассматриваются раздельно.
Автогенераторы гармонических колебаний
Обеспечить в автономной (без внешнего воздействия) системе нарастающий колебательный процесс можно за счет введения обратной связи и создания условий, при которых система становится неустойчивой.
На этапе возникновения колебаний система может рассматриваться как линейная. Тогда условием возникновения колебательного нарастающего процесса является наличие в характеристическом уравнении системы пары комплексно-сопряженных корней с положительной вещественной частью. В системе второго порядка это возможно лишь при введении положительной обратной связи. Обычно усилитель, являющийся основой автогенератора, проектируется так, что его инерционностью на частоте генерации можно пренебречь и считать, что корни характеристического уравнения определяются только цепью обратной связи, которая называется фазирующей или частотозадающей. В результате структурная схема автогенератора может быть сведена к обобщенному виду (рис. 6.1).
Рис. 6.1. Обобщенная схема
автогенератора
гармонических
сигналов:
1 – усилитель;
2 -
частотозадающая цепь
Рассмотрим для примера RC-цепь, изображенную на рис. 6.2. Передаточная функция и АФЧХ цепи имеют вид
,
. (6.1)
Рис.
6.2. Пример фазирующей
RC-цепи
1-К (р)=0
или (с учетом (6.1)) р2(RC)2+pRC(3-K)-0.
Корни этого уравнения
.
Для обеспечения условия нарастания колебаний 0 необходимо обеспечить очевидное условие
К3. (6.2)
Чтобы прояснить физическую сущность соотношения (6.2), рассмотрим АЧХ и ФЧХ фазирующей цепи, построенные на основании (6.1) и изображенные на рис. 6.3.
На
частоте
фаза RC-цепи
равна нулю. Это значит, что в чистом виде
положительная обратная связь имеет
место только на этой частоте. Поскольку
при этом передача -цепи
равна 1/3, условие (6.2) означает очень
важное неравенство
К1, (6.3)
=0.
Рис.
6.3. АЧХ и ФЧХ фазирующей цепи
Стационарный режим колебаний (с постоянной амплитудой и частотой) устанавливается, когда в системе строго соблюдается энергетический баланс: затухание энергии, вносимое пассивной фазирующей цепью, точно компенсируется усилителем.
Эти условия можно отразить равенством
К =1, (6.4)
=0,
которое называется балансом амплитуд.
Переход от условия самовозбуждения (6.3) к условию стационарности амплитуды (6.4) возможен, если петлевое усиление является зависимым от уровня выходного сигнала
К = F(Uвых). (6.5)
Соотношение (6.5) означает, что для обеспечения установившегося режима в автогенераторе принципиально необходима нелинейность петлевого усиления, которая может быть обеспечена или за счет нелинейного усилителя, или за счет специальных схем автоматической регулировки усиления (АРУ).
Пример простейшей схемы АРУ приведен на рис. 6.4. На диоде VD и конденсаторе Сф выполнен преобразователь переменного напряжения в постоянное. Сопротивление полевого транзистора, включенного в цепь отрицательной обратной связи, а следовательно, и коэффициент усиления зависит от уровня выходного напряжения. В данной схеме температурная нестабильность сопротивления полевого транзистора приводит к нестабильности стационарной амплитуды. Поэтому на практике применяются более сложные схемы АРУ, обеспечивающие высокую стабильность выходного напряжения.
Важной характеристикой автогенератора является стабильность частоты генерации. Как было показано, генерация возникает на частоте, где выполняется строгое равенство: суммарный фазовый сдвиг по петле обратной связи равен нулю, то есть
у + =0, =0. (6.6)
Рис. 6.4. Схема
автогенератора с обеспечением
стационарного режима за счет АРУ
Изменение любого слагаемого (6.6), вызванное температурной нестабильностью параметров усилителя или фазирующей цепи, приведет к изменению исходной частоты генерации
(у у)+( )=0,
0,
Рис.
6.5. Нестабильность частоты генерации,
вызываемая
нестабильностью фазы усилителя
Нестабильность фазы усилителя автоматически приведет к изменению частоты генерации таким образом, чтобы снова выполнялся баланс фаз. Очевидно, что, чем круче фазовая характеристика фазирующей цепи, тем меньше зависимость частоты от нестабильности фазы усилителя. Естественно, что сама -цепь также должна обладать высокой фазовой стабильностью. Поскольку стабильность RC-элементов не обеспечивает высоких требований к стабильности частоты, то основным способом стабилизации частоты автогенераторов является применение кварцев - специально обработанных пластин природного кварца, которые обладают свойством электромеханического резонанса, обладают очень высокой стабильностью и крутизной фазовой характеристики. Кварц может быть представлен электрической моделью в виде остроизбирательности LC-контура с фиксированной резонансной частотой. Если частота сигнала ниже резонансной частоты кварца, то он приобретает индуктивный характер, если частота сигнала выше резонансной - емкостной характер. Это позволяет в RC-генераторе заменить один из конденсаторов фазирующей цепи кварцем с требуемой резонансной частотой (рис. 6.6). В результате крутизна фазовой характеристики -цепи будет определяться кварцем.
Рис.
6.6. Введение в фазирующую цепь кварца
для
стабилизации частоты
Автогенераторы являются автономными источниками тестовых сигналов.
Основным способом возбуждения колебаний является введение в усилитель положительной обратной связи. Процесс возникновения колебаний может анализироваться на основе линейной модели. Ограничение нарастающих колебаний на заданном стационарном уровне достигается за счет нелинейности усилителя или других элементов автогенератора. Наличие нелинейности является принципиально необходимым для любого генератора.