
- •Часть 1
- •1. Задачи, решаемые электронной техникой, и элементы, необходимые для их решения
- •1.1. Электрические сигналы. Временное и спектральное представление
- •1.2. Усиление электрических сигналов
- •1.3. Модуляция сигналов
- •1.3.1. Амплитудная модуляция
- •1.3.2. Импульсно-кодовая модуляция
- •1.3.3. Широтно-импульсная модуляция
- •1.4. Фильтрация сигналов
- •1.5. Хранение и отображение информации
- •1.6. Преобразование электрической энергии
- •А) б) Рис. 1.21. Схема простейшего инвертора (а) и временная диаграмма напряжения в нагрузке (б) Основные результаты 1 главы
- •2. Математический аппарат описания электронных элементов
- •2.1. Описание нелинейных элементов
- •2.2. Линеаризация нелинейных уравнений
- •Линеаризованное уравнение нелинейного элемента
- •2.4. Частотный анализ линеаризованных цепей
- •2.5. Временной анализ линеаризованных цепей
- •Основные результаты 2 главы
- •3. Полупроводники – основа современной элементной базы электроники
- •3.1. Преимущества полупроводниковых элементов перед электровакуумными
- •3.2. Физические основы электропроводности полупроводников
- •3.3. Электропроводность беспримесного (собственного) полупроводника
- •3.4. Электропроводность примесных полупроводников
- •3.4.1. Донорная примесь
- •3.4.2. Акцепторная примесь
- •3.6. Инерционность р-п-перехода
- •3.6.1. Зарядная емкость р-п-перехода
- •3.6.2. Диффузионная емкость
- •3.7. Пробой р-п-перехода
- •3.7.1. Тепловой пробой
- •3.7.2. Электрический пробой
- •3.8. Математическая модель р-п-перехода
- •3.9. Переход металл-полупроводник
- •Основные результаты 3 главы
- •4. Многопереходные электронные элементы
- •4.1. Полупроводниковые триоды (биполярные транзисторы)
- •4.2. Активный режим работы биполярного транзистора
- •4.2. Статические характеристики биполярного транзистора для активного режима
- •4.3. Инерционность биполярного транзистора
- •4.4. Пробой коллекторного перехода
- •4.5. Пробой эмиттерного перехода
- •4.6. Нелинейная модель биполярного транзистора
- •4.7. Линеаризованная модель биполярного транзистора
- •4.8. Ключевой режим биполярного транзистора
- •4.9. Полевые транзисторы
- •4.10. Полевые транзисторы с управляющим р-п-переходом
- •4.12. Тиристоры
- •Д ля регулирования в течение каждой полуволны знакопеременного ис
- •Основные результаты 4 главы
- •5. Основы теории электронных усилителей
- •5.1. Общие положения
- •5.2. Обратная связь в усилительных устройствах
- •5.3. Операционные усилители (оу)
- •5.4. Усилители мощности
- •5.4.1. Линейные усилители мощности
- •5.4.2. Усилители мощности ключевого типа
- •6. Автогенераторы
- •Автогенераторы гармонических колебаний
- •7. Источники вторичного электропитания электронных устройств
- •7.1. Классическая схема вторичного источника (без преобразования частоты сети)
- •7.2. Вторичные источники с преобразованием частоты сети
- •7.3. Функциональные элементы вторичных источников электропитания
- •7.3.1. Преобразователи переменного напряжения
- •7.3.2. Стабилизаторы постоянного напряжения (спн)
- •Оглавление
- •Электроника
- •Часть 1 Электронная база, аналоговые функциональные устройства
3.6.2. Диффузионная емкость
Диффузионная емкость - это виртуальная емкость, с помощью которой моделируют эффект конечного времени “рассасывания” неравновесного заряда неосновных носителей в высокоомной части р-п-перехода.
Если, как и ранее, рассматривать случай, когда область р является более высокоомной, то есть
nn>>pn,
а) б)
Рис. 3.12. Проявление
диффузионной емкости р-п-перехода:
а) при низкой
скорости изменения сигнала;
б) при высокой
скорости изменения сигнала
На рис. 3.12 б показано, как диффузионная емкость при высокой частоте изменения напряжения приводит к потере свойства односторонней проводимости р-п-перехода. Очевидно, что, чем больше величина прямого тока, тем больше неравновесный заряд, тем больше времени необходимо для его рассасывания (разряда диффузионной емкости), тем больше инерционность р-п-перехода.
3.7. Пробой р-п-перехода
Увеличение обратного напряжения до некоторого критического значения вызывает явление лавинообразного нарастания обратного тока, которое, если не принять мер по его ограничению, вызовет разрушение р-п-перехода. Это явление называется пробоем. Физический механизм пробоя достаточно сложен и его условно можно разделить на два типа: тепловой и электрический.
3.7.1. Тепловой пробой
Тепловой пробой можно упрощенно представить следующей схемой: при протекании обратного тока на р-п-переходе выделяется мощность Р=U0I0, что приводит к нагреву объема полупроводника. Возникает положительная тепловая связь, которая, если не обеспечить температурного равновесия (за счет эффективного отвода тепла), приведет к тепловому разрушению р-п-перехода. Предотвращение теплового пробоя является серьезной инженерной задачей и достигается за счет ограничения величины обратного напряжения и обеспечения хорошего отвода тепла от р-п-перехода (установка р-п-перехода на теплоотводящие пластины - радиаторы, активное вентилирование).
3.7.2. Электрический пробой
Рис.
3.13. Характеристика
электрического
пробоя