
- •Оптика. Принцип наименьшего времени
- •§ 1. Свет
- •§ 2. Отражение и преломление
- •§ 3. Принцип наименьшего времени Ферма
- •§ 4. Применения принципа Ферма
- •§ 5, Более точная формулировка принципа Ферма
- •§ 6. Квантовый механизм
- •Глава 27
- •§ 2. Фокусное расстояние для сферической поверхности
- •§ 3. Фокусное расстояние линзы
- •§ 4. Увеличение
- •§ 5. Сложные линзы
- •§ 6. Аберрация
- •§ 7. Разрешающая способность
- •Глава 28
- •§ 2. Излучение
- •§ 3. Дипольный излучатель
- •§ 4. Интерференция
- •Глава 29
- •Интерференция
- •§ 2. Энергия излучения
- •§ 3. Синусоидальные волны.
- •§ 4. Два дипольных излучателя
- •§ 5. Математическое описание интерференции
- •Глава 30
- •§ 2. Дифракционная решетка
- •§ 3. Разрешающая способность дифракционной решетки
- •§ 4. Параболическая антенна
- •§ 5, Окрашенные пленки; кристаллы
- •§ 6. Дифракция на непрозрачном экране
- •§ 7. Поле системы осцилляторов, расположенных на плоскости
- •Глава 31 как возникает показатель преломления
- •§ 2. Поле, излучаемое средой
- •§ 3. Дисперсия
- •§ 4 Поглощение
- •§ 5. Энергия световой волны
- •§ 6. Дифракция света на непрозрачном экране
- •Глава 32 радиационное затухание. Рассеяние света
- •§ 2. Интенсивность излучения
- •§ 3. Радиационное затухание
- •§ 4. Независимые источники
- •§ 5. Рассеяние света
- •Глава 33
- •В этом последнем случае вектор электрического поля описывает эллипс, что можно проиллюстрировать на следующем простом примере.
- •§ 2. Поляризация рассеянного света
- •§ 3. Двойное лучепреломление
- •§ 4. Поляризаторы
- •§ 5. Оптическая активность
- •§ 6. Интенсивность отраженного света
- •§ 7. Аномальное преломление
- •Глава 34
- •§ 2. Определение «кажущегося» движения
- •§ 3 Синхpoтpoннoe излyчeнue
- •§ 4. Космическое еинхротронное излучение
- •§ 5. Тормозное излучение
- •§ 6. Эффект Допплера
- •§ 7. Четырехвектор (, k)
- •§ 8. Аберрация
- •§ 9. Импульс световой волны
- •Глава 35
- •§ 2. Цвет зависит от интенсивности
- •§ 3. Измерение восприятия цвета
- •§ 4. Диаграмма цветности
- •§ 5. Механизм цветового зрения
- •§ 6, Физико-химические свойства цветового зрения
- •Глава 36 механизм зрения
- •§ 2. Физиология зрения
- •§ 3. Палочки
- •§ 4. Сложные глаза насекомых
- •§ 5. Другие типы глаз
- •§ 6. Нервные механизмы зрения
- •Глава 37
- •§ 2. Опыт с пулеметной стрельбой
- •§ 4. Опыт с электронами
- •§ 5. Интерференция электронных волн
- •§ 6. Как проследить за электроном?
- •§ 7. Начальные принципы квантовой мвханики
- •§ 8. Принцип неопределенности
- •Глава 38
- •§ 2. Измерение положения и импульса
- •§ 3. Дифракция на кристалле
- •Ф иг. 38.7. Диффузия нейтронов из котла сквозь графитовый блок
- •§ 4. Размер атома
- •§ 5. Уровни энергии
- •§ 6. Немного философии
§ 3. Дифракция на кристалле
Теперь рассмотрим отражение волн вещества от кристалла. Кристалл — это твердое тело, состоящее из множества одинаковых атомов, расположенных стройными рядами. Как можно расположить этот строй атомов, чтобы, отражая в данном направлении данный пучок света (рентгеновских лучей), электронов, нейтронов, чего угодно, получить сильный максимум? Чтобы испытать сильное отражение, лучи, рассеянные от всех атомов, должны быть в фазе друг с другом. Не может быть так, чтобы точно половина волн была в фазе, а половина — в противофазе, тогда все волны исчезнут. Нужно, стало быть, найти поверхности постоянной фазы; это, как мы уже объясняли раньше, плоскости, образующие равный угол с начальным и конечным направлениями (фиг. 38.4).
Если мы рассмотрим две параллельные плоскости, как показано на фиг. 38.4, то волны, рассеянные на них, окажутся в фазе только тогда, когда разность расстояний, пройденных фронтом волны, будет равна целому числу длин волн. Эта разность, как легко видеть, равна 2dsin, где d — расстояние между плоскостями. Итак, условие когерентного отражения имеет вид
(
n=1,
2, ...). (38.9)
Если, скажем, кристалл таков, что атомы в нем укладываются на плоскостях, удовлетворяющих условию (38.9) с n=1, то будет наблюдаться сильное отражение. Если, с другой стороны, существуют другие атомы той же природы (и расположенные с той же плотностью) как раз посередине между слоями, то на этих промежуточных плоскостях произойдет рассеяние равной силы; оно интерферирует с первым и погасит его. Поэтому d в выражении (38.9) должно означать расстояние между примыкающими плоскостями; нельзя взять две плоскости, разделенные пятью слоями, и применить к ним эту формулу!
Ф
иг.
38.4. Рассеяние волн плоскостями
кристалла.
Ф
иг.
38.5. Дифракция рентгеновских лучей
на кристаллах каменной соли.
Интересно, что настоящие кристаллы обычно не столь просты,— это не одинаковые атомы, повторяющиеся по определенному закону. Они скорее похожи, если прибегнуть к двумерной аналогии, на обои, на которых повторяется один и тот же сложный узор. Для атомов «узор» — это некоторая их расстановка, куда может входить довольно большое число атомов; скажем, для углекислого кальция — атомов кальция, углерода и трех атомов кислорода. Важно не то, каков рисунок, а то, что он повторяется.
Этот основной рисунок называется ячейкой, а способ повторения определяет тип решетки; тип решетки можно сразу определить, взглянув на отражения и рассмотрев их симметрию. Другими словами, от типа решетки зависит, где не будет отражения (лучей от кристалла), но чтобы узнать, что стоит в каждой ячейке, надо учесть и интенсивность рассеяния по тем или иным направлениям. Направления рассеяния зависят от типа решетки, а сила рассеяния определяется тем, что находится внутри каждой ячейки; этим способом и было изучено строение кристаллов.
Две фотографии дифракции рентгеновских лучей даны на фиг. 38.5 и 38.6.
Занятная вещь получается с рассеянием, когда промежутки между ближайшими плоскостями меньше /2. В этом случае уравнение (38.9) вообще не имеет решений ни для одного п. Выходит, когда больше двойного промежутка между примыкающими плоскостями, то никаких боковых дифракционных пятнышек нет и свет (и не только свет, а все, что хотите) прямо проходит через вещество.
Ф
иг.
38.6.
Дифракция рентгеновских лучей на
миоглобине.