
- •Биохимия
- •Содержание
- •1 Введение
- •1.1 Предмет биохимии
- •1.2 Области исследований биохимии.
- •История развития биохимии.
- •1.4 Методы изучения
- •1.5 Значимость биохимии как науки.
- •2. Аминокислоты, их строение и свойства
- •2.1 Элементарный состав белков.
- •2.2 Аминокислотный состав белков
- •2.3 Классификация аминокислот
- •1) Классификация аминокислот по r-группам
- •2) Классификация аминокислот по функциональным группам
- •2.4 Общие химические свойства
- •Электрофильно-нуклеофильные свойства.
- •1 Стадия.
- •2 Стадия
- •3. Строение и свойства белков. Методы их выделения и очистки
- •3.1 Содержание белков в органах и тканях
- •Биологические функции белков
- •Каталитическая (ферментативная) функции
- •3.2.2 Транспортная функция белков
- •Рецепторная функция:
- •3.2.4 Защитная функция
- •Структурная функция
- •Двигательные белки
- •3.3 Классификация белков
- •3.4 Структуры белка
- •Третичная структура белка. Под третичной структурой белка подразумевают пространственную ориентацию полипептидной спирали или способ укладки полипептидной цепи в определенном объеме.
- •3.5 Физико-химические свойства белков
- •Химия нуклеиновых кислот
- •4.1 Методы выделения нуклеиновых кислот.
- •4.2 Химический состав нуклеиновых кислот
- •4.3.Структура нуклеиновых кислот
- •4.4 Первичная структура нуклеиновых кислот
- •4.5 Вторичная структура нуклеиновых кислот
- •4.6 Третичная структура нуклеиновых кислот
- •4.7 Транспортные рнк
- •4.8 Матричная рнк
- •5. Ферменты
- •Характеристика ферментов, их свойств
- •Отличительные признаки ферментативного и химического катализа.
- •5.3 Пространственное строение
- •5.4 Функции коферментов и простетических групп
- •5.4.4 Кофермент ацетилирования (коэнзим а, или просто КоА)
- •5.5 Классификация и номенклатура ферментов
- •5.6 Механизм действия ферментов
- •6. Ферментативная кинетика
- •6.1 Уравнения Михаэлиса-Ментен и Лайнуивера-Бэрка
- •Факторы, определяющие активность ферментов. Зависимость скорости реакции от времени
- •6.3 Влияние концентраций субстрата и фермента на скорость ферментативной реакции
- •6.4 Активирование и ингибирование ферментов
- •6.5 Применение ферментов
- •7 Химия липидов
- •7.1 Биологическая роль и классификация липидов
- •7.2 Жирные кислоты
- •7.3 Глицериды (ацилглицеролы)
- •7.4 Фосфолипиды
- •7.5 Сфинголипиды (сфингофосфолипиды)
- •7.6 Стероиды
- •Химия углеводов
- •8.1 Биологическая роль углеводов
- •Классификация углеводов
- •Моносахариды
- •Основные реакции моносахаридов, продукты реакций и их свойства.
- •Олигосахариды
- •8.6 Полисахариды
- •8.7 Гетерополисахариды
- •9 Витамины
- •9.1 Классификация витаминов
- •9.2 Витамины, растворимые в жирах.
- •9.2.1 Витамины группы а
- •9.2.2 Витамины группы d
- •9.2.3 Витамины группы к
- •9.2.4 Витамины группы е
- •9.3 Витамины, растворимые в воде
- •9.3.1 Витамин b1
- •9.3.2 Витамин в2
- •9.3.3 Витамин рр
- •9.3.4 Витамин в6
- •9.3.5 Биотин (витамин н)
- •9.3.6 Фолиевая кислота
- •9.3.7 Витамин в12
- •9.3.8 Пантотеновая кислота (витамин в3)
- •9.3.8 Витамин с
- •9.3.9 Витамин р
- •10. Гормоны
- •10.1 Общее понятие о гормонах
- •10.2 Номенклатура и классификация гормонов
- •10.3 Гормоны гипоталамуса
- •10.3 Гормоны гипофиза
- •10.4 Вазопрессин и окситоцин
- •10.5 Меланоцитстимулирующие гормоны (мсг, меланотропины)
- •10.6 Адренокортикотропный гормон (актг, кортикотропин)
- •10.7 Соматотропный гормон (стг, гормон роста, соматотропин)
- •10.8 Лактотропный гормон (пролактин, лютеотропный гормон)
- •10.9 Тиреотропный гормон (ттг, тиротропин)
- •10.10 Гонадотропные гормоны (гонадотропины)
- •10.11 Липотропные гормоны (лтг, липотропины)
- •10.12 Гормоны паращитовидных желез (паратгормоны)
- •10.13 Гормоны щитовидной железы
- •10.15 Гормоны поджелудочной железы
- •10.16 Гормоны надпочечников
- •10.17 Половые гормоны
- •10.18 Гормоны вилочковой железы (тимуса)
- •10.19 Молекулярные механизмы передачи гормонального сигнала
- •Аденилатциклазная мессенджерная система. Наиболее изученным является аденилатциклазный путь передачи гормонального сигнала. В нем задействовано минимум пять хорошо изученных белков:
- •11. Обмен веществ и энергии
- •11.1 Понятие метаболизма.
- •11.2 Биологическое окисление
- •11.3 Атф (аденозинтрифосфорная кислота)
- •12. Обмен углеводов
- •12.1 Переваривание и всасывание
- •12.2 Промежуточный обмен
- •12.2.1 Общая характеристика
- •2 Молекулы пвк (2 молекулы по 3 атома углерода)
- •12.2.2 Анаэробный распад
- •I этап 1. Фосфорилирование (активация) глюкозы:
- •7. Гидролиз 3 фосфоглицероилфосфата
- •8. Изомеризация 3-фосфоглицерата
- •III этап 9. Дегидратация 2-фосфоглицерата
- •12.2.3 Аэробный распад
- •13 Синтез углеводов
- •13.1 Строение и синтез гликогена
- •13.2 Регуляция синтеза и его нарушения
- •Глюконеогенез
- •1 ,3 Дифосфоглицерат
- •14 Обмен липидов
- •14. 1 Метаболизм триглицеридов
- •14.2 Промежуточный обмен
- •14.2.1 Превращение триглицеридов и окисление глицерина.
- •14.2.2 Окисление жирных кислот
- •14.2.3 Биосинтез жирных кислот
- •14.2.3 Превращения глицерофосфатидов
- •Обмен белков
- •15.1 Значение белков в организме
- •15.2 Переваривание и всасывание белка
- •Промежуточный обмен
- •Биосинтез белка
- •Дезаминирование аминокислот
- •Переаминирование (трансаминирование) аминокислот
- •Декарбоксилирование аминокислот
- •16 Обмен сложных белков
- •16.1 Обмен нуклеопротеидов
- •17.2 Обмен гемоглобина
- •17 Обмен белков. Цикл мочевины
- •17. 1 Конечные продукты распада аминокислот
- •17. 2 Синтез мочевины, орнитиновый цикл
- •17.3 Обмен отдельных аминокислот
- •18 Взаимосвязь обмена белков, жиров и углеводов. Обмен воды и минеральных солей.
- •18.1 Взаимосвязь обмена углеводов и жиров.
- •18.2 Взаимосвязь обмена углеводов и белков.
- •18.3 Взаимосвязь обмена белков и жиров.
- •18.4 Понятие о гомеостазе.
- •18.5 Водный обмен и его регуляция.
- •18.6 Минеральный обмен
Классификация углеводов
Углеводы можно определить как альдегидные или кетонные производные полиатомных (содержащих более одной ОН-группы) спиртов или как соединения, при гидролизе которых образуются эти производные.
Согласно принятой в настоящее время классификации, углеводы подразделяются на три основные группы: моносахариды, олигосахариды и полисахариды.
Моносахариды
Моносахариды можно рассматривать как производные многоатомных спиртов, содержащие карбонильную (альдегидную или кетонную) группу. Если карбонильная группа находится в конце цепи, то моносахарид представляет собой альдегид и называется альдозой; при любом другом положении этой группы моносахарид является кетоном и называется кетозой.
Простейшие представители моносахаридов – триозы: глицеральдегид и диоксиацетон. При окислении первичной спиртовой группы трехатомного спирта – глицерола – образуется глицеральдегид (альдоза), а окисление вторичной спиртовой группы приводит к образованию диоксиацетона (кетоза).
Стереоизомерия моносахаридов. Все моносахариды содержат асимметричные атомы углерода: альдотриозы – один центр асимметрии, альдотетрозы – 2, альдопентозы – 3, альдогексозы – 4 и т.д. Кетозы содержат на один асимметричный атом меньше, чем альдозы с тем же числом углеродных атомов. Следовательно, кетотриоза диоксиацетон не содержит асимметричных атомов углерода. Все остальные моносахариды могут существовать в виде различных стереоизомеров.
Общее число стереоизомеров для любого моносахарида выражается формулой N = 2n, где N – число стереоизомеров, а n – число асимметричных атомов углерода. Как отмечалось, глицеральдегид содержит только один асимметричный атом углерода и поэтому может существовать в виде двух различных стереоизомеров.
Изомер глицеральдегида, у которого при проекции модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны, принято считать D-глицеральдегидом, а зеркальное отражение – L-глицеральдегидом:
Альдогексозы содержат четыре асимметричных атома углерода и могут существовать в виде 16 стереоизомеров (24), представителем которых является, например, глюкоза. Для альдопентоз и альдотетроз число стереоизомеров равно соответственно 23 = 8 и 22 = 4.
Все изомеры моносахаридов подразделяются на D- и L-формы (D-и L-конфигурация) по сходству расположения групп атомов у последнего центра асимметрии с расположением групп у D- и L-глицеральдегида. Природные гексозы: глюкоза, фруктоза, манноза и галактоза – принадлежат, как правило, по стереохимической конфигурации к соединениям D-ряда.
Известно, что природные моносахариды обладают оптической активностью. Способность вращать плоскость поляризованного луча света – одна из важнейших особенностей веществ (в том числе моносахаридов), молекулы которых имеют асимметричный атом углерода или асимметричны в целом. Свойство вращать плоскость поляризованного луча вправо обозначают знаком плюс (+), а в противоположную сторону – знаком минус (–). Так, D-глицеральдегид вращает плоскость поляризованного луча вправо, т. е. D-глицеральдегид является D(+)-альдотриозой, а L-глицеральдегид – L(–)-альдотриозой. Однако направление угла вращения поляризованного луча, которое определяется асимметрией молекулы в целом, заранее непредсказуемо. Моносахариды, относящиеся по стереохимической конфигурации к D-ряду, могут быть левовращающими. Так, обычная форма глюкозы, встречающаяся в природе, является правовращающей, а обычная форма фруктозы – левовращающей.
Циклические (полуацетальные) формы моносахаридов. Явление мутаротации имеет объяснение. Известно, что альдегиды и кетоны легко и обратимо реагируют с эквимолярным количеством спирта с образованием полуацеталей:
Реакция образования полуацеталя возможна и в пределах одной молекулы, если это не связано с пространственными ограничениями. По теории А. Байера, внутримолекулярное взаимодействие спиртовой и карбонильной групп наиболее благоприятно, если оно приводит к образованию пяти- или шестичленных циклов. При образовании полуацеталей возникает новый асимметрический центр (для D-глюкозы это С-1). Шестичленные кольца сахаров называют пиранозами, а пятичленные – фуранозами. α-Форма – это форма, у которой расположение полуацетального гидроксила такое же, как у асимметричного углеродного атома, определяющего принадлежность к D- или L-ряду. Иными словами, в формулах с α-модификацией моносахаридов D-ряда полуацетальный гидроксил пишут справа, а в формулах представителей L-ряда – слева. При написании β-формы поступают наоборот.
Таким образом, явление мутаротации связано с тем, что каждый твердый препарат углеводов представляет собой какую-либо одну циклическую (полуацетальную) форму, но при растворении и стоянии растворов эта форма через альдегидную превращается в другие таутомерные циклические формы до достижения состояния равновесия. При этом значение удельного вращения, характерное для исходной циклической формы, постепенно меняется. Наконец, устанавливается постоянное удельное вращение, которое характерно для равновесной смеси таутомеров. Например, известно, что в водных растворах глюкоза находится главным образом в виде α- и β-глюкопираноз, в меньшей степени – в виде α- и β-глюкофураноз и совсем небольшое количество глюкозы – в виде альдегидной формы.
Следует подчеркнуть, что из различных таутомерных форм глюкозы в свободном состоянии известны лишь α- и β-пиранозы. Существование малых количеств фураноз и альдегидной формы в растворах доказано, но в свободном состоянии они не могут быть выделены вследствие своей неустойчивости.
В 20-х годах У. Хеуорс предложил более совершенный способ написания структурных формул углеводов. Формулы Хеуорса – шести- или пятиугольники, причем они изображены в перспективе: кольцо лежит в горизонтальной плоскости. Находящиеся ближе к читателю связи изображают более жирными линиями (углеродные атомы цикла не пишут). Заместители, расположенные справа от остова молекулы при ее вертикальном изображении, помещают ниже плоскости кольца, а заместители, находящиеся слева,– выше плоскости кольца. Обратное правило применяют только для того единственного углеродного атома, гидроксильная группа которого участвует в образовании циклического полуацеталя. Так, у D-сахаров группу СН2ОН пишут над этим атомом углерода, а водородный атом при нем – внизу.
Наконец, следует помнить, что при написании структурных формул по Хеуорсу гидроксильная группа при С-1 должна быть расположена ниже плоскости кольца в α-форме и выше – в β-форме:
Проекционные формулы Хеуорса не отражают подлинной конформации моносахаридов. Подобно циклогексану, пиранозное кольцо может принимать две конфигурации – форму кресла и форму лодки (конформационные формулы). Форма кресла обычно более устойчива, и, по-видимому, именно она преобладает в большей части природных сахаров (рис. 25).
Рис. 25 α-D-глюкоза, а - линейная формула глюкозы (альдогексоза); б - структурная формула по Хеуорсу; в - конформационная формула (форма кресла).