Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект лек теплотех готов рус.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
5.13 Mб
Скачать

§ 3. Интенсификация теплопередачи.

ТЕПЛОВАЯ ИЗОЛЯЦИЯ

При решении практических задач теплопередачи требуется либо повысить интенсивность переноса теплоты от греющей среды к нагреваемой, либо, наоборот, затормозить этот процесс. Интенсификация переноса теплоты возможна путем увеличения перепада температур между теплоносителями (tж1 – tж2) или путем уменьшения термического сопротивления R теплопередачи.

Температуры теплоносителей tж1 и tж2 обусловлены требованиями технологических процессов и изменять их не всегда можно. Уменьшить величину термического сопротивления R теплопередачи можно воздействием на любой из составляющих, от которых он зависит: 1/1; 1/2, /.

Термическое сопротивление стенки можно уменьшить, уменьшив ее толщину  (что связано с надежностью стенки) или увеличив коэффициент теплопроводности материала; при эксплуатации очень важно не допускать отложения на поверхностях сажи и накипи. Даже некие коэффициенты теплопроводности, создает большое термическое сопротивление (слой накипи в 1 мм толщиной создает термическое сопротивление, равное сопротивлению стальной стенки толщиной 40 мм, а 1 мм сажи создает сопротивление, эквивалентное толщине стальной стенки 400 мм). Поэтому при эксплуатации котельных установок и теплообменных устройств необходимо предохранять их от всякого рода отложений. Это является одной из первоочередных задач обслуживающего персонала.

Увеличить коэффициенты теплоотдачи 1 и 2 можно более интенсивным перемешиванием жидкости, увеличением скорости течения теплоносителей, оребрения поверхности (увеличение площади поверхности) теплообмена с той стороны, где  имеет меньшее значение.

Для снижения потерь теплоты сооружениями, агрегатами, тепловыми сетями необходимо, наоборот, увеличить термическое сопротивление R. В практике эта задача решается путем нанесения на поверхность теплообмена слоя материала с низким коэффициентом теплопроводности , называемого теплоизолятором. Обычно к теплоизоляторам относят материалы, коэффициент теплопроводности которых не превышает 0,2 Вт/(м . К).

Теплоизоляторы, как правило, состоят из волокнистой порошковой или пористой основы, заполненной воздухом. Воздух, имеющий низкий коэффициент теплопроводности, создает высокое термическое сопротивление, а основа препятствует возникновению конвекции и переносу теплоты излучением. При этом основа в плотном состоянии часто имеет достаточно высокое значение  (до 1,0 Вт/(м . К), и естественно, с увеличением плотности набивки минеральной ваты, асбеста или другого теплоизолирующего материала теплопроводность возрастает.

Коэффициент теплопроводности теплоизоляции возрастает также с увеличением температуры, что связано с ростом теплопроводности воздуха и увеличением теплопереноса путем излучения.

В настоящее время широкое применение в качестве теплоизоляторов получили искусственно вспученные материалы из застывшей пены: пенопласты, пенобетоны и т. п. Они обладают высокими теплоизоляционными свойствами из-за значительной пористости. Рассмотренные теплоизоляционные материалы имеют коэффициент теплопроводности  выше, чем у заполняющего поры воздуха. Лучшими свойствами обладают вакуумно-порошковые теплоизоляционные материалы, в порах которых создается вакуум, а уменьшение переноса теплоты излучением обеспечивается слоями фольги с малой степенью черноты, которые выполняют роль экранов.

Расчет теплоизоляции проводят по формулам теплопередач, которые приведены выше. При этом величина допустимых теплопотерь, как правило, известна, а в результате расчета находят толщину слоя тепловой изоляции .