
- •Раздел 1 Машины постоянного тока
- •Тема 1.1. Общие сведения о машинах постоянного тока
- •1.1.1. Основные сведения о машинах постоянного тока и их классификация
- •1.1.2. Принцип действия генератора и двигателя постоянного тока
- •1.1.3. Конструкция генератора и двигателя постоянного тока
- •1.1.4. Обмотки якоря машин постоянного тока
- •1.1.5. Электродвижущая сила (эдс) и электромагнитный момент машины постоянного тока
- •1.1.6. Выбор типа обмотки якоря
- •Тема 1.2. Магнитное поле машины постоянного тока
- •1.2.1. Магнитная цепь машины постоянного тока и реакция якоря
- •1.2.2. Способы возбуждения машин постоянного тока
- •Тема 1.3. Коммутация в машинах постоянного тока
- •1.3.1. Причины, вызывающие искрение на коллекторе
- •1.3.2. Виды коммутации и способы её улучшения
- •Тема 1.4. Коллекторные генераторы и двигатели постоянного тока
- •1.4.1. Виды генераторов постоянного тока и их характеристики
- •1.4.2. Параллельная работа генераторов постоянного тока
- •1.4.3. Коллекторные двигатели постоянного тока
- •1.4.4. Пуск и регулирование скорости вращения двигателя постоянного тока
- •1.4.5. Потери и кпд коллекторных машин постоянного тока
- •1.4.6. Машины постоянного тока специального назначения
- •Раздел 2. Трансформаторы
- •Тема 2.1. Назначение, классификация, принцип действия и устройство трансформаторов
- •2.1.1. Назначение, классификация и принцип действия трансформаторов
- •2.1.2.Устройство трансформаторов
- •2.1.3.Многообмоточные трансформаторы
- •Тема 2.2. Режимы работы трансформатора и его характеристики
- •2.2.1. Приведенный трансформатор
- •2.2.2. Режим холостого хода
- •2.2.3. Нагрузочный режим
- •2.2.4. Режим короткого замыкания
- •2.2.5. Потери и кпд трансформатора
- •2.2.6. Регулирование напряжения трансформаторов
- •Тема 2.3. Группы соединения обмоток и параллельная работа трансформаторов
- •2.3.1. Группы соединения обмоток
- •2.3.2. Параллельная работа трансформаторов
- •Тема 2.4 Автотрансформаторы и трансформаторы специального назначения
- •2.4.1. Автотрансформаторы
- •2.4.2. Трансформаторы специального назначения
- •Раздел 3. Машины переменного тока
- •Тема 3.1. Синхронные машины переменного тока
- •3.1.1. Назначение, принцип действия и устройство синхронных машин переменного тока
- •3.1.2. Возбуждение синхронных машин
- •3.1.3. Потери и кпд синхронных машин
- •Тема 3.2. Синхронные генераторы
- •3.2.1. Реакция якоря синхронного генератора
- •3.2.2. Характеристики синхронного генератора
- •3.2.3. Включение синхронных генераторов на параллельную работу
- •Тема 3.3 Синхронные двигатели и компенсаторы
- •3.3.1. Особенности конструкции синхронных двигателей
- •3.3.2. Пуск и регулирование скорости вращения синхронных двигателей
- •3.3.3. Рабочие характеристики синхронного двигателя
- •3.3.4. Синхронные компенсаторы
- •3.3.5. Синхронные машины специального назначения
- •Тема 3.4 Асинхронные машины
- •3.4.1. Назначение, конструкция, принцип действия и режимы работы асинхронной машины
- •3.4.2. Устройство асинхронных двигателей
- •3.4.3. Потери и кпд асинхронного двигателя
- •3.4.4. Характеристики асинхронного двигателя
- •3.4.5. Пуск и регулирование частоты вращения трёхфазных асинхронных двигателей
- •3.4.6. Однофазные и конденсаторные асинхронные двигатели
- •3.4.7 . Асинхронные машины специального назначения
- •Раздел 4. Химические преобразователи электрической энергии
- •Тема 4.1. Гальванические элементы
- •4.1.1. Электрический ток в жидких проводниках
- •4.1.2. Эдс в гальваническом элементе
- •4.1.3. Сухие гальванические элементы
- •Тема 4.2. Аккумуляторы
- •4.2.1. Принцип действия аккумуляторов
- •4.2.2. Кислотные аккумуляторы
- •4.2.3. Щёлочные аккумуляторы
- •4.2.4. Электрические характеристики аккумуляторов
- •Раздел 5. Нагревание и охлаждение электрических машин и трансформаторов
- •Тема 5.1. Нагревание электрических машин и трансформаторов
- •5. 1. 1. Закон нагревания электрических машин и трансформаторов
- •5.1.2. Номинальные режимы работы электрических машин
- •Тема 5.2. Охлаждение электрических машин и трансформаторов
- •5.2.1. Охлаждение электрических машин
- •5.2.2. Охлаждение трансформаторов
- •5.2.3. Новые принципы создания электрических машин
- •Литература
1.4.4. Пуск и регулирование скорости вращения двигателя постоянного тока
Пуск двигателя постоянного тока осуществляется следующими основными способами:
1). Прямой пуск, – при котором обмотка якоря включается непосредственно в сеть питания. Т. к. при прямом пуске ток якоря в 10-20 раз больше номинального тока двигателя, прямой пуск применяют только для двигателей малой мощности и редко для двигателей мощностью в несколько киловатт.
2). Реостатный пуск, – при котором обмотка якоря включается в сеть питания через пусковой реостат, имеющий несколько ступеней (секций), которые в процессе пуска замыкаются специальными выключателями (контакторами). Реостатный пуск применяют на электровозах и электропоездах постоянного тока. Электропоезда имеют приблизительно постоянную массу, поэтому в них выключение ступеней пускового реостата производится автоматически специальным реле ускорения (реле минимального тока). Электропоезда чаще всего имеют разную массу, поэтому выключение ступеней пускового реостата в них производится самим машинистом вручную контролером машиниста по мере увеличения скорости движения.
3). Пуск двигателей постоянного тока путём понижения питающего напряжения применяют для двигателей большой мощности, т. к. применение для них пусковых реостатов нецелесообразно из за значительных потерь мощности. Для этого необходимо иметь источник постоянного тока с плавно регулируемым напряжением (генератор или управляемый выпрямитель). Такой пуск называют безреостатным и применяют его на электроподвижном составе переменного тока и тепловозах.
Регулирование скорости вращения двигателя постоянного тока оценивается плавностью регулирования, диапазоном регулирования (определяется отношением наибольшей частоты вращения к наименьшей) и экономичностью регулирования (определяется стоимостью регулирующей аппаратуры и потерями электроэнергии в ней).
Частота вращения двигателя постоянного тока n определяется по формуле:
n
= [U-I×
Cе×Ф],
где
U
– напряжение питающей сети,
ток
якоря,
– сопротивление цепи якоря, Се
– постоянная для данной машины
(определяется её конструктивными
особенностями), Ф – основной магнитный
поток двигателя.
Из этой формулы следует, что регулировать скорость вращения двигателя можно следующими способами:
1). Изменением питающего напряжения U – при этом двигатель подключают к источнику регулируемого постоянного напряжения (генератор с независимым возбуждением или регулируемый выпрямитель). Этот способ применяют на тепловозах (от генератора), а также на электровозах и электропоездах (от выпрямителя). Несмотря на то, что он требует довольно сложного оборудования, его широко применяют на современных тепловозах и электропоездах, т. к. он обеспечивает плавное и экономичное регулирование частоты вращения в широких пределах.
2). Изменением сопротивления в цепи якоря , т. е. включением реостата в цепь обмотки якоря. Этот способ позволяет осуществлять плавное регулирование частоты вращения в широком диапазоне, причём, чем больше сопротивление реостата, тем меньше частота вращения. Т. к. при этом способе регулирования частоты вращения возникают большие потери, его применяют только при кратковременных режимах работы, например при пуске.
3). Изменением основного магнитного потока Ф – при этом в цепь возбуждения включают регулировочный реостат, который регулирует ток возбуждения и, следовательно, основной магнитный поток . В двигателях с независимым и параллельным возбуждением регулировочный реостат включают последовательно с ОВ. В двигателях с последовательным возбуждением регулировочный реостат включают параллельно ОВ, вследствие чего через ОВ будет протекать только часть тока якоря (другая часть будет ответвляться в регулировочный реостат). Этот способ прост и экономичен и его широко применяют на локомотивах и тепловозах, но в этом случае регулирование частоты вращения можно осуществлять только в сравнительно небольшом диапазоне.