
- •Раздел 1 Машины постоянного тока
- •Тема 1.1. Общие сведения о машинах постоянного тока
- •1.1.1. Основные сведения о машинах постоянного тока и их классификация
- •1.1.2. Принцип действия генератора и двигателя постоянного тока
- •1.1.3. Конструкция генератора и двигателя постоянного тока
- •1.1.4. Обмотки якоря машин постоянного тока
- •1.1.5. Электродвижущая сила (эдс) и электромагнитный момент машины постоянного тока
- •1.1.6. Выбор типа обмотки якоря
- •Тема 1.2. Магнитное поле машины постоянного тока
- •1.2.1. Магнитная цепь машины постоянного тока и реакция якоря
- •1.2.2. Способы возбуждения машин постоянного тока
- •Тема 1.3. Коммутация в машинах постоянного тока
- •1.3.1. Причины, вызывающие искрение на коллекторе
- •1.3.2. Виды коммутации и способы её улучшения
- •Тема 1.4. Коллекторные генераторы и двигатели постоянного тока
- •1.4.1. Виды генераторов постоянного тока и их характеристики
- •1.4.2. Параллельная работа генераторов постоянного тока
- •1.4.3. Коллекторные двигатели постоянного тока
- •1.4.4. Пуск и регулирование скорости вращения двигателя постоянного тока
- •1.4.5. Потери и кпд коллекторных машин постоянного тока
- •1.4.6. Машины постоянного тока специального назначения
- •Раздел 2. Трансформаторы
- •Тема 2.1. Назначение, классификация, принцип действия и устройство трансформаторов
- •2.1.1. Назначение, классификация и принцип действия трансформаторов
- •2.1.2.Устройство трансформаторов
- •2.1.3.Многообмоточные трансформаторы
- •Тема 2.2. Режимы работы трансформатора и его характеристики
- •2.2.1. Приведенный трансформатор
- •2.2.2. Режим холостого хода
- •2.2.3. Нагрузочный режим
- •2.2.4. Режим короткого замыкания
- •2.2.5. Потери и кпд трансформатора
- •2.2.6. Регулирование напряжения трансформаторов
- •Тема 2.3. Группы соединения обмоток и параллельная работа трансформаторов
- •2.3.1. Группы соединения обмоток
- •2.3.2. Параллельная работа трансформаторов
- •Тема 2.4 Автотрансформаторы и трансформаторы специального назначения
- •2.4.1. Автотрансформаторы
- •2.4.2. Трансформаторы специального назначения
- •Раздел 3. Машины переменного тока
- •Тема 3.1. Синхронные машины переменного тока
- •3.1.1. Назначение, принцип действия и устройство синхронных машин переменного тока
- •3.1.2. Возбуждение синхронных машин
- •3.1.3. Потери и кпд синхронных машин
- •Тема 3.2. Синхронные генераторы
- •3.2.1. Реакция якоря синхронного генератора
- •3.2.2. Характеристики синхронного генератора
- •3.2.3. Включение синхронных генераторов на параллельную работу
- •Тема 3.3 Синхронные двигатели и компенсаторы
- •3.3.1. Особенности конструкции синхронных двигателей
- •3.3.2. Пуск и регулирование скорости вращения синхронных двигателей
- •3.3.3. Рабочие характеристики синхронного двигателя
- •3.3.4. Синхронные компенсаторы
- •3.3.5. Синхронные машины специального назначения
- •Тема 3.4 Асинхронные машины
- •3.4.1. Назначение, конструкция, принцип действия и режимы работы асинхронной машины
- •3.4.2. Устройство асинхронных двигателей
- •3.4.3. Потери и кпд асинхронного двигателя
- •3.4.4. Характеристики асинхронного двигателя
- •3.4.5. Пуск и регулирование частоты вращения трёхфазных асинхронных двигателей
- •3.4.6. Однофазные и конденсаторные асинхронные двигатели
- •3.4.7 . Асинхронные машины специального назначения
- •Раздел 4. Химические преобразователи электрической энергии
- •Тема 4.1. Гальванические элементы
- •4.1.1. Электрический ток в жидких проводниках
- •4.1.2. Эдс в гальваническом элементе
- •4.1.3. Сухие гальванические элементы
- •Тема 4.2. Аккумуляторы
- •4.2.1. Принцип действия аккумуляторов
- •4.2.2. Кислотные аккумуляторы
- •4.2.3. Щёлочные аккумуляторы
- •4.2.4. Электрические характеристики аккумуляторов
- •Раздел 5. Нагревание и охлаждение электрических машин и трансформаторов
- •Тема 5.1. Нагревание электрических машин и трансформаторов
- •5. 1. 1. Закон нагревания электрических машин и трансформаторов
- •5.1.2. Номинальные режимы работы электрических машин
- •Тема 5.2. Охлаждение электрических машин и трансформаторов
- •5.2.1. Охлаждение электрических машин
- •5.2.2. Охлаждение трансформаторов
- •5.2.3. Новые принципы создания электрических машин
- •Литература
Тема 1.3. Коммутация в машинах постоянного тока
1.3.1. Причины, вызывающие искрение на коллекторе
При работе машины постоянного тока щётки и коллектор образуют скользящий контакт. Щётки выбирают в соответствии с допустимой плотностью тока для выбранной марки щёток, а площадь контакта – по значению рабочего тока, приходящегося на одну щётку.
Причины, вызывающие искрение на коллекторе разделяют на механические, потенциальные и коммутационные. Коммутация – это процесс переключения секции якоря из одной параллельной ветви в другую.
1). Механические причины искрения – слабое давление щёток на коллектор, биение коллектора, загрязнение или негладкость поверхности коллектора, выступление миканитовой изоляции над пластинами, неплотное закрепление траверсы или щёткодержателей, т. е. любые причины, нарушающие контакт между щётками и коллектором.
2). Потенциальные причины искрения – появляются при возникновении напряжения между коллекторными пластинами, превышающего допустимое значение (30 В при мощности машины до 1 кВт и 16 В при мощности машины более 1 кВт).
3). Коммутационные причины искрения – создаются физическими процессами при переходе секции обмотки якоря из одной параллельной ветви в другую.
Искрение на коллекторе оценивается классом коммутации (степенью искрения) под сбегающим краем щётки:
- степень 1 – тёмная коммутация (искрения нет),
-
степень 1
- слабое искрение,
-
степень 1
- слабое искрение под большей частью
щётки и почернение коллектора,
- степень 2 – искрение под всем краем щётки с почернением коллектора и нагаром на нём,
- степень 3 – значительное искрение под всем краем щётки с появлением вылетающих искр и значительным почернением коллектора.
При номинальной нагрузке класс коммутации не должен превышать 1 . Классы коммутации 2 и 3 допускаются только для прямого (безреостатного) включения или реверсирования машин, если при этом коллектор и щётки остаются пригодными к эксплуатации.
1.3.2. Виды коммутации и способы её улучшения
Сложность процессов коммутации не позволяет рассмотреть её в общем виде. Поэтому для получения аналитических и графических зависимостей, поясняющих коммутацию, допускают, что ширина щётки равна коллекторному делению (ширине щётки), щётки расположены на геометрической нейтрали (линии перпендикулярной магнитным силовым линиям магнитного поля машины) и электрическое сопротивление коммутирующей секции мало.
Различают следующие виды коммутации, т. е. процесса перехода щётки с одной пластины коллектора на другую, при котором секция обмотки переходит из одной параллельной ветви в другую (рис. 8):
1). Прямолинейная, при которой пластины коллектора выходят из под щётки без разрыва тока и ток в коммутирующей секции изменяется по прямолинейному закону. При этом не происходит искрения на коллекторе (идеальная коммутация).
2).
Криволинейная замедленная, при которой
ток в коммутирующей секции изменяется
с высокой скоростью, что приводит к
возникновению реактивной (результирующей)
ЭДС
,
препятствующей линейному изменению
тока в коммутирующей секции. При этом
плотность тока под сбегающим краем
щётки (добавочный ток коммутации iд)
может достичь недопустимо больших
значений и вызвать искрение на коллекторе.
Рис. 8. Виды коммутации:
а) – прямолинейная; б) – криволинейная замедленная.
Способы улучшения коммутации сводятся к уменьшению добавочного тока коммутации iд:
Iд
=
где
– сумма электрических сопротивлений
добавочному току коммутации (в основном
определяется сопротивлением щёток и
переходного контакта
).
Из полученного выражения следует, что уменьшить коммутацию можно либо уменьшив суммарную реактивную ЭДС , либо увеличив сопротивление щёток . Отсюда вытекает ряд основных способов улучшения коммутации:
1). Уменьшение реактивной ЭДС. Реактивная ЭДС может быть в значительной степени уменьшена или даже полностью устранена созданием в зоне коммутации (по оси щёток) коммутирующего поля определённой полярности. Создаётся такое поле или добавочными полюсами или смещением щёток с геометрической нейтрали.
Добавочные полюса создают в зоне коммутации магнитное поле такой величины и направления, чтобы наводимая этим полем в коммутирующей секции ЭДС вращения компенсировала реактивную ЭДС. При этом щётки устанавливают на геометрической нейтрали. Если машина снабжена компенсационной обмоткой, то магнитодвижущую силу (МДС) добавочных полюсов уменьшают на МДС компенсационной обмотки.
Смещением щёток с геометрической нейтрали создают коммутирующее поле в зоне коммутации в машинах мощностью до 1 кВт, не имеющих добавочных полюсов.
2). Улучшение коммутации применением щёток с большим сопротивлением целесообразно для машин с небольшим рабочим током, т. к. при большом рабочем токе необходимо увеличивать площадь щёточного контакта, что приводит к увеличению коллектора и, следовательно, габаритов машины в целом.
Про значительных перегрузках или внезапном коротком замыкании машины постоянного тока, коммутация приобретает резко замедленный характер. При этом появляются коммутационные и потенциальные причины для возникновения электрической дуги на коллекторе. Т. к. коллектор вращается, то дуга механически растягивается, образуя вокруг коллектора мощную электрическую дугу, называемую круговым огнём по коллектору. Круговой огонь очень опасен, т. к. может привести к тяжёлой аварии машины, вплоть до пожара. Добавочные полюса и компенсационная обмотка уменьшают эту опасность, но полностью её не устраняют. Поэтому для устранения этого явления в машинах, работающих в условиях перегрузок, между коллектором и обмоткой на якоре устанавливают изолирующий экран или применяют воздушное дутьё, сдувающее дугу в сторону подшипника, а для создания препятствия на пути распространения дуги между щётками разной полярности устанавливают барьеры из изоляционного материала.
Т. к. коллекторные машины создают радиопомехи, для их подавления чаще всего применяют ёмкостные фильтры в виде конденсаторов, включаемых между каждым токоведущим проводом и корпусом машины.