
- •Раздел 1 Машины постоянного тока
- •Тема 1.1. Общие сведения о машинах постоянного тока
- •1.1.1. Основные сведения о машинах постоянного тока и их классификация
- •1.1.2. Принцип действия генератора и двигателя постоянного тока
- •1.1.3. Конструкция генератора и двигателя постоянного тока
- •1.1.4. Обмотки якоря машин постоянного тока
- •1.1.5. Электродвижущая сила (эдс) и электромагнитный момент машины постоянного тока
- •1.1.6. Выбор типа обмотки якоря
- •Тема 1.2. Магнитное поле машины постоянного тока
- •1.2.1. Магнитная цепь машины постоянного тока и реакция якоря
- •1.2.2. Способы возбуждения машин постоянного тока
- •Тема 1.3. Коммутация в машинах постоянного тока
- •1.3.1. Причины, вызывающие искрение на коллекторе
- •1.3.2. Виды коммутации и способы её улучшения
- •Тема 1.4. Коллекторные генераторы и двигатели постоянного тока
- •1.4.1. Виды генераторов постоянного тока и их характеристики
- •1.4.2. Параллельная работа генераторов постоянного тока
- •1.4.3. Коллекторные двигатели постоянного тока
- •1.4.4. Пуск и регулирование скорости вращения двигателя постоянного тока
- •1.4.5. Потери и кпд коллекторных машин постоянного тока
- •1.4.6. Машины постоянного тока специального назначения
- •Раздел 2. Трансформаторы
- •Тема 2.1. Назначение, классификация, принцип действия и устройство трансформаторов
- •2.1.1. Назначение, классификация и принцип действия трансформаторов
- •2.1.2.Устройство трансформаторов
- •2.1.3.Многообмоточные трансформаторы
- •Тема 2.2. Режимы работы трансформатора и его характеристики
- •2.2.1. Приведенный трансформатор
- •2.2.2. Режим холостого хода
- •2.2.3. Нагрузочный режим
- •2.2.4. Режим короткого замыкания
- •2.2.5. Потери и кпд трансформатора
- •2.2.6. Регулирование напряжения трансформаторов
- •Тема 2.3. Группы соединения обмоток и параллельная работа трансформаторов
- •2.3.1. Группы соединения обмоток
- •2.3.2. Параллельная работа трансформаторов
- •Тема 2.4 Автотрансформаторы и трансформаторы специального назначения
- •2.4.1. Автотрансформаторы
- •2.4.2. Трансформаторы специального назначения
- •Раздел 3. Машины переменного тока
- •Тема 3.1. Синхронные машины переменного тока
- •3.1.1. Назначение, принцип действия и устройство синхронных машин переменного тока
- •3.1.2. Возбуждение синхронных машин
- •3.1.3. Потери и кпд синхронных машин
- •Тема 3.2. Синхронные генераторы
- •3.2.1. Реакция якоря синхронного генератора
- •3.2.2. Характеристики синхронного генератора
- •3.2.3. Включение синхронных генераторов на параллельную работу
- •Тема 3.3 Синхронные двигатели и компенсаторы
- •3.3.1. Особенности конструкции синхронных двигателей
- •3.3.2. Пуск и регулирование скорости вращения синхронных двигателей
- •3.3.3. Рабочие характеристики синхронного двигателя
- •3.3.4. Синхронные компенсаторы
- •3.3.5. Синхронные машины специального назначения
- •Тема 3.4 Асинхронные машины
- •3.4.1. Назначение, конструкция, принцип действия и режимы работы асинхронной машины
- •3.4.2. Устройство асинхронных двигателей
- •3.4.3. Потери и кпд асинхронного двигателя
- •3.4.4. Характеристики асинхронного двигателя
- •3.4.5. Пуск и регулирование частоты вращения трёхфазных асинхронных двигателей
- •3.4.6. Однофазные и конденсаторные асинхронные двигатели
- •3.4.7 . Асинхронные машины специального назначения
- •Раздел 4. Химические преобразователи электрической энергии
- •Тема 4.1. Гальванические элементы
- •4.1.1. Электрический ток в жидких проводниках
- •4.1.2. Эдс в гальваническом элементе
- •4.1.3. Сухие гальванические элементы
- •Тема 4.2. Аккумуляторы
- •4.2.1. Принцип действия аккумуляторов
- •4.2.2. Кислотные аккумуляторы
- •4.2.3. Щёлочные аккумуляторы
- •4.2.4. Электрические характеристики аккумуляторов
- •Раздел 5. Нагревание и охлаждение электрических машин и трансформаторов
- •Тема 5.1. Нагревание электрических машин и трансформаторов
- •5. 1. 1. Закон нагревания электрических машин и трансформаторов
- •5.1.2. Номинальные режимы работы электрических машин
- •Тема 5.2. Охлаждение электрических машин и трансформаторов
- •5.2.1. Охлаждение электрических машин
- •5.2.2. Охлаждение трансформаторов
- •5.2.3. Новые принципы создания электрических машин
- •Литература
2.2.3. Нагрузочный режим
При подключении нагрузки Zн к вторичной обмотке трансформатора он начинает отдавать нагрузке некоторую мощность, при этом увеличивается и мощность, получаемая первичной обмоткой из питающей сети. Следовательно, при увеличении тока І2 во вторичной обмотке возрастает и ток І1 в первичной обмотке.
Для определения изменения вторичного напряжения трансформатора при нагрузке U2 обычно его приводят к первичному, умножая на коэффициент трансформации n, т. е.:
U´2 = U2×n.
Точно также приводят к первичной обмотке ток вторичной обмотки , умножая его на 1/n, т. е.:
І´2 = І2/n.
Величины U´2 и І´2 называют приведенными вторичным напряжением и вторичным током.
Зависимость приведенного вторичного напряжения U´2 от приведенного вторичного тока І´2 называется нагрузочной (внешней) характеристикой трансформатора (рис. 26). Из характеристики видно, что активно-индуктивная нагрузка вызывает большее изменение напряжения, чем активная (изменение напряжения возрастает с уменьшением коэффициента мощности вторичной обмотки cos f2 в цепи нагрузки). В силовых и выпрямительных трансформаторах изменение напряжения при номинальном токе обычно составляет (2÷6)% (в зависимости от cos f2 ).
Рис. 26. Нагрузочные (внешние) характеристики (а) и график зависимости КПД трансформатора от нагрузки (б).
2.2.4. Режим короткого замыкания
Короткое замыкание трансформатора – это такой режим, когда вторичная обмотка замкнута накоротко(Zн = 0), при этом вторичное напряжение равно нулю U2 = 0.
В паспорте трансформатора указывают не изменение напряжения, которое различно для разных cos f2, а результирующее падение напряжения в его обмотках при номинальном нагрузочном токе. Это падение напряжения называют напряжением короткого замыкания (к. з.), и его можно определить опытным путём, если питать трансформатор с замкнутой накоротко вторичной обмоткой пониженным напряжением Uк (опыт короткого замыкания). В этом случае напряжение Uк будет равно такому напряжению U1, при котором по обмоткам замкнутого накоротко трансформатора протекают номинальные токи І1н и І2н.Напряжение к. з. является весьма важным эксплуатационным показателем, его выражают в процентах от U1н:
Uк% = (Uк/U1н)×100.
Для трансформаторов средней мощности Uк = (5÷7)%, для мощных трансформаторов Uк = (6÷12)%. Зависимость тока к. з. Ік, мощности к. з. Рк и коэффициента мощности cos fк от напряжения к. з. Uк называются характеристиками короткого замыкания (рис. 27).
Она показывает, что увеличение Uк приводит к резкому увеличению Ік и если к. з. происходит в процессе эксплуатации при номинальном напряжении, то в обеих обмотках возникают большие токи, превышающие номинальные в 10-20 раз, при этом резко повышается температура обмоток (аварийный режим) и требуется специальная защита, быстро отключающая трансформатор
Рис. 27. Схема опыта к. з. (а) и характеристики к. з. (б) трансформатора.
2.2.5. Потери и кпд трансформатора
В процессе трансформирования электрической энергии часть энергии теряется в трансформаторе на покрытие потерь. Эти потери разделяются на электрические и магнитные:
1). Электрические потери обусловлены нагревом обмоток трансформатора при прохождении по ним электрического тока. Их мощность Рэ равна сумме потерь в первичной обмотке Рэ1 и во вторичной обмотке Рэ2:
Рэ = Рэ1+Рэ2.
Электрические потери называют переменными, т. к. их величина зависит от нагрузки трансформатора. При номинальном токе для мощных трансформаторов они обычно составляют (0,5÷2)% номинальной мощности. Уменьшение электрических потерь достигается соответствующим выбором площади сечения проводов обмоток трансформатора (снижение электрических потерь в проводах).
2). Магнитные потери происходят главным образом в магнитопроводе трансформатора. Причина этих потерь - систематическое перемагничивание магнитопровода переменным магнитным полем. Их мощность Рм равна сумме потерь от гистерезиса Рг и от вихревых токов Рв. т.
Рм = Рг+Рв. т.
Магнитные потери для мощных трансформаторов составляют (0,3÷0,5)% номинальной мощности. С целью уменьшения магнитных потерь магнитопровод трансформатора изготовляют из электротехнической стали (снижение потерь от перемагничивания) и делают его шихтованным в виде пакетов из тонких пластин, изолированных с двух сторон (снижение потерь от вихревых токов).
Коэффициент полезного действия (КПД) трансформатора определяется как отношение активной мощности на выходе вторичной обмотки Р2 (полезная мощность) к активной мощности на входе первичной обмотки Р1 (подводимая мощность):
Ƞ = Р2/Р1=Р2/(Р2+Рэ+Рм).
Благодаря отсутствию в трансформаторе вращающихся и трущихся деталей потери энергии в нём по сравнению с вращающимися машинами малы, а КПД высок и достигает в трансформаторах большой мощности (0,98÷0,99). В трансформаторах малой мощности КПД достигает (0,5÷0,7). Максимальное значение КПД трансформатор имеет при такой нагрузке, когда электрические потери Рэ равны магнитным потерям Рм. При проектировании трансформаторов стремятся, чтобы максимальное значение КПД достигалось при нагрузке (50÷75)% номинальной; это соответствует наиболее вероятной средней нагрузке работающего трансформатора, называемой экономической.