
- •Електронний підручник з дисципліни
- •Лекція 2 Розділ 1. Основи метрологічного забезпечення.
- •Тема 1.1 Метрологія – наукова основа вимірювань.
- •1.1.2 Сигнали вимірювальної інформації.
- •1.1.3 Завади, шуми, наводки в каналах вимірювальних пристроїв
- •Лекція 3
- •1.2.2 Систематичні похибки. Способи зменшення систематичних похибок.
- •1.2.3 Випадкові похибки вимірювання
- •Лекція 4
- •1.2.5 Динамічні похибки вимірювання
- •1.2.6 Підвищення точності засобів вимірювання
- •1.2.7 Класи точності та позначення вимірювальних приладів
- •Метрологічне забезпечення вимірювання.
- •1.3.2 Поняття про метрологічне забеспечення та його основи
- •1.3.3 Мета та основні завдання метрологічного забеспечення
- •1.3.4 Єдність і точність вимірювання
- •Лекція 6
- •1.3.5 Одиниці фізичних величин. Еталони одиниць фізичних величин. Міжнародна система одиниць сі.
- •1.3.6 Державна система забезпечення єдності вимірювань.
- •1.3.5 Одиниці фізичних величин. Еталони одиниць фізичних величин. Міжнародна система одиниць сі.
- •1.3.6 Державна система забезпечення єдності вимірювань
- •Лекція 7 Засоби вимірювання.
- •1.4.1 Засоби вимірювання, за допомогою яких здійснюють операції вимірювання
- •1.4.2 Метрологічні характеристики і класи точності засобів вимірювання
- •1.4.3. Структури засобів вимірювання
- •1.4.4 Класифікація вимірювальних приладів
- •Метрологічна служба України та її функції.
- •1.5.2 Функції державної метрологічної служби
- •1.5.3 Загальні положення та завдання метрологічної експертизи
- •1.5.4 Метрологічна атестація засобів вимірювальної техніки Загальні положення
- •1.5.5 Метрологічна перевірка засобів вимірювальної техніки Загальні положення
- •Розділ 2. Вимірювання параметрів електро і радіоланцюгів.
- •Вимірювальні перетворювачі струму та напруги.
- •2.1.1 Електромеханічні: магнітоелектричні та електромагнітні перетворювачі
- •2.1.2Електродинамічні, феродинамічні, електростатичні та індукційні перетворювачі
- •2.1.2 Електродинамічні, феродинамічні, електростатичні та індукційні перетворювачі
- •2.1.2 Масштабні вимірювальні перетворювачі
- •2.1.3 Вимірювальні підсилювачі
- •2.1.4 Вимірювальні трансформатори струму та напруги
- •2.1.5 Вимірювальні перетворювачі змінних напруг та струмів: діючих, середніх амплітудних значень
- •2.1.6 Фазочутливі перетворювачі,і перетворювачі напруг та струмів в частоту, часові інтервали
- •Аналого-цифрові (ацп) та цифроаналогові (цап)
- •2.1.7 Перетворювачі неелектричних величин. Тензоперетворювачі.
- •2.1.8 Терморезистивний, індуктивний та ємнісний перетворювачі.
- •2.2.1 Різновидності приладів. Умовні позначення приладів. Схеми ввімкнення.
- •2.2.2 Вимірювання струмів та напргу приладами прямої дії та компенсаційним методом.
- •2.2.3 Електронні аналогові та цифрові прилади для вимірювання напруг
- •Тема 2.3 Вимірювання електричного опору, ємності, індуктивності
- •Схеми заміщення
- •Тема 2.4 Вимірювання частоти і інтервалів часу, вимірювання фазового зсуву, вимірювання спектру сигналів, вимірювання амплітудно- частотних характеристик
- •2.4.1 Електромеханічні частотоміри
- •2.4.1 Цифрові методи вимірювання частоти,періоду, інтервалів часу
- •2.4.4 Електродинамічний фазометр
- •2.4.5 Фазообертачі
- •2.4.6 Аналіз спектрів сигналів
- •Принцип дії
- •2.4.7 Вимірювання нелінійних спотворень
- •2.4.8 Вимірювання амплітудно-частотних характеристик
- •Розділ 3 Вимірювальні прилади.
- •Тема 3.1 Вимірювальні генератори.
- •3.1.1 Загальні положення і класифікація вимірювальних генераторів.
- •3.1.2 Генератори низькочастотні, класифікація, характеристика, схеми, принцип дії.
- •Лекція 23
- •3.1.3 Генератори високочастотні, класифікація, характеристика, схеми, принцип дії.
- •3.1.4 Універсальні генератори
- •Тема 3.2 Електронні осцилографи. Призначення, класифікація, побудова.
- •3.1.4 Генератори імпульсних сигналів, використання, схеми, принцип дії
- •3.2.2 Спрощена структурна схема осцилографа, принцип дії. Побудова електронно-променевої трубки.
- •Електронно-променеві осцилографи реального часу
- •Швидкісні, стробоскопічні та запам’ятовуючі осцилографи
- •Аналізатори спектра
- •Вимірювачі нелінійних викривлень
- •Лекція 25
- •Тема 3.2 Електронні осцилографи. Призначення, класифікація, побудова.
- •3.2.3 Повна структурна схема осцилографа, характеристика і призначення блоків схеми.
- •3.3. Структурна схема Осцилографи
- •3.2.4 Принцип перетворення сигналу в видиме зображення на екрані осцилографа.
- •Лекція 26
- •3.2.5 Підготовка осцилографа до роботи. Основні регулювання. Вимірювання параметрів сигналів осцилографом
- •Підготовка до включення
- •Тема 3.3 Цифрові осцилографи. Лекція 27
- •3.3.1 Принцип роботи та побудова цифрових осцилографів
- •3.3.3 Використання програмно - апаратного комплексу PicoScope 6 для вимірювання параметрів електричних кіл . Інші приклади віртуальних осцилографів.
- •Кабель usb
- •Затискач
- •Кнопка керування приладом
- •На самому приладі є кнопка зупинки дослідження.
- •Розділ 4 Напівпровідникові пристрої та інтегральні Мікросхеми
- •Тема 4.1 Вимірювання параметрів напівпровідникових діодів та транзисторів.
- •13.9.3. Важливість програмного забезпечення.
- •Лекція 30
- •Тема 4.2 Вимірювання параметрів напівпровідникових діодів та транзисторів.
- •13.9.3. Важливість програмного забезпечення.
- •Тема 4.3 Автоматизація радіоелектронних вимірювань.
- •4.3.1Автоматизація вимірювального процесу. Автоматизація вимірювального процесу
- •4.3.2 Структурні схеми автоматичних засобів вимірювання
- •4.3.3 Автоматичний контроль
- •11.3. Автоматичний контроль
- •11.4. Основні компоненти
Вимірювачі нелінійних викривлень
У
багатьох випадках виникає потреба у
визначенні ступеня викривлення вихідної
напруги генератора або нелінійних
викривлень сигналів у системах передачі
інформації. Ступінь нелінійних викривлень
сигналу ux(t)
характеризують коефіцієнтом гармонік,
під яким розуміють відношення СКЗ
напруги вищих гармонік
до СКЗ основної (першої) гармоніки
(у відносних одиницях або у відсотках)
цього сигналу:
,
(6.28)
де
або
.
Проте частіш за все в аналогових вимірювачах нелінійних викривлень вимірюють приблизне значення коефіцієнта гармонік - відношення СКЗ напруги вищих гармонік до СКЗ досліджуваної напруги U (у відносних одиницях або у відсотках):
,(6.29)
що призводить до систематичної методичної похибки вимірювань.
Коефіцієнти
,
у відносних одиницях, зв‘язані між
собою співвідношенням
.
(6.30)
Отже,
вимірявши приблизний коефіцієнт
,
завжди можна визначити коефіцієнт
гармонік
,
вилучивши методичну похибку. При
<
0,1 значення коефіцієнтів
і
практично збігаються і за точне значення
беруть показ приладу, тобто
.
На Рис.6.53 приведена спрощена структурна схема вимірювача нелінійних викривлень. Основними її елементами є подільник напруги R, попередній підсилювач П1, загороджувальний (режекторний) фільтр, узгоджений підсилювач П2 і електронний вольтметр V СКЗ.
Підсилювач П1 забезпечує підсилення сигналу uх(t) до значення, зручного для відліку, а підсилювач П2 призначений для усунення впливу електронного вольтметра на настроювання фільтра і підвищення чутливості приладу.
Вимірювання коефіцієнта гармонік виконується двома етапами: перший етап - калібрування, другий етап - вимірювання. Калібрування зводиться до приведення СКЗ напруги досліджуваного сигналу uх до одного, стандартного рівня, який приймається за 100%. Для цього перемикач S ставиться в положення К (калібрування) і зміною вручну або автоматично коефіцієнта передачі вхідного подільника напруги R переміщують вказівник вольтметра на кінцеву позначку шкали “100”. Тим самим установлюється відповідність позначки “100” шкали такому самому значенню у відсотках коефіцієнта гармонік , що забезпечує безпосередній відлік значення коефіцієнта гармонік зі шкали приладу згідно з формулою (6.29).
Рис.6. Структурна схема вимірювача нелінійних викривлень.
Для виконання вимірювання перемикач S переводять у положення В (вимірювання) і настроюють режекторний фільтр на частоту основної гармоніки досліджуваного сигналу за мініРисьним показом вольтметра. Настроєний фільтр заглушує основну гармоніку і водночас пропускає вищі гармоніки сигналу uх. Внаслідок цього на вхід електронного вольтметра надходять лише вищі гармоніки вхідного сигналу, і, отже, відхилення вказівника вольтметра відповідає значенню коефіцієнта . Точне значення коефіцієнта при необхідності обчислюється за формулою (6.30).
Прилад дозволяє вимірювати СКЗ напруги Ux, для чого перемикач S переводять у положення V.
Вимірювачі нелінійних викривлень працюють у межах звукових і ультразвукових частот від 20 Гц до 200 кГц, їх основна абсолютна похибка вимірювання коефіцієнта гармонік складає приблизно 5...10%.