
- •Електронний підручник з дисципліни
- •Лекція 2 Розділ 1. Основи метрологічного забезпечення.
- •Тема 1.1 Метрологія – наукова основа вимірювань.
- •1.1.2 Сигнали вимірювальної інформації.
- •1.1.3 Завади, шуми, наводки в каналах вимірювальних пристроїв
- •Лекція 3
- •1.2.2 Систематичні похибки. Способи зменшення систематичних похибок.
- •1.2.3 Випадкові похибки вимірювання
- •Лекція 4
- •1.2.5 Динамічні похибки вимірювання
- •1.2.6 Підвищення точності засобів вимірювання
- •1.2.7 Класи точності та позначення вимірювальних приладів
- •Метрологічне забезпечення вимірювання.
- •1.3.2 Поняття про метрологічне забеспечення та його основи
- •1.3.3 Мета та основні завдання метрологічного забеспечення
- •1.3.4 Єдність і точність вимірювання
- •Лекція 6
- •1.3.5 Одиниці фізичних величин. Еталони одиниць фізичних величин. Міжнародна система одиниць сі.
- •1.3.6 Державна система забезпечення єдності вимірювань.
- •1.3.5 Одиниці фізичних величин. Еталони одиниць фізичних величин. Міжнародна система одиниць сі.
- •1.3.6 Державна система забезпечення єдності вимірювань
- •Лекція 7 Засоби вимірювання.
- •1.4.1 Засоби вимірювання, за допомогою яких здійснюють операції вимірювання
- •1.4.2 Метрологічні характеристики і класи точності засобів вимірювання
- •1.4.3. Структури засобів вимірювання
- •1.4.4 Класифікація вимірювальних приладів
- •Метрологічна служба України та її функції.
- •1.5.2 Функції державної метрологічної служби
- •1.5.3 Загальні положення та завдання метрологічної експертизи
- •1.5.4 Метрологічна атестація засобів вимірювальної техніки Загальні положення
- •1.5.5 Метрологічна перевірка засобів вимірювальної техніки Загальні положення
- •Розділ 2. Вимірювання параметрів електро і радіоланцюгів.
- •Вимірювальні перетворювачі струму та напруги.
- •2.1.1 Електромеханічні: магнітоелектричні та електромагнітні перетворювачі
- •2.1.2Електродинамічні, феродинамічні, електростатичні та індукційні перетворювачі
- •2.1.2 Електродинамічні, феродинамічні, електростатичні та індукційні перетворювачі
- •2.1.2 Масштабні вимірювальні перетворювачі
- •2.1.3 Вимірювальні підсилювачі
- •2.1.4 Вимірювальні трансформатори струму та напруги
- •2.1.5 Вимірювальні перетворювачі змінних напруг та струмів: діючих, середніх амплітудних значень
- •2.1.6 Фазочутливі перетворювачі,і перетворювачі напруг та струмів в частоту, часові інтервали
- •Аналого-цифрові (ацп) та цифроаналогові (цап)
- •2.1.7 Перетворювачі неелектричних величин. Тензоперетворювачі.
- •2.1.8 Терморезистивний, індуктивний та ємнісний перетворювачі.
- •2.2.1 Різновидності приладів. Умовні позначення приладів. Схеми ввімкнення.
- •2.2.2 Вимірювання струмів та напргу приладами прямої дії та компенсаційним методом.
- •2.2.3 Електронні аналогові та цифрові прилади для вимірювання напруг
- •Тема 2.3 Вимірювання електричного опору, ємності, індуктивності
- •Схеми заміщення
- •Тема 2.4 Вимірювання частоти і інтервалів часу, вимірювання фазового зсуву, вимірювання спектру сигналів, вимірювання амплітудно- частотних характеристик
- •2.4.1 Електромеханічні частотоміри
- •2.4.1 Цифрові методи вимірювання частоти,періоду, інтервалів часу
- •2.4.4 Електродинамічний фазометр
- •2.4.5 Фазообертачі
- •2.4.6 Аналіз спектрів сигналів
- •Принцип дії
- •2.4.7 Вимірювання нелінійних спотворень
- •2.4.8 Вимірювання амплітудно-частотних характеристик
- •Розділ 3 Вимірювальні прилади.
- •Тема 3.1 Вимірювальні генератори.
- •3.1.1 Загальні положення і класифікація вимірювальних генераторів.
- •3.1.2 Генератори низькочастотні, класифікація, характеристика, схеми, принцип дії.
- •Лекція 23
- •3.1.3 Генератори високочастотні, класифікація, характеристика, схеми, принцип дії.
- •3.1.4 Універсальні генератори
- •Тема 3.2 Електронні осцилографи. Призначення, класифікація, побудова.
- •3.1.4 Генератори імпульсних сигналів, використання, схеми, принцип дії
- •3.2.2 Спрощена структурна схема осцилографа, принцип дії. Побудова електронно-променевої трубки.
- •Електронно-променеві осцилографи реального часу
- •Швидкісні, стробоскопічні та запам’ятовуючі осцилографи
- •Аналізатори спектра
- •Вимірювачі нелінійних викривлень
- •Лекція 25
- •Тема 3.2 Електронні осцилографи. Призначення, класифікація, побудова.
- •3.2.3 Повна структурна схема осцилографа, характеристика і призначення блоків схеми.
- •3.3. Структурна схема Осцилографи
- •3.2.4 Принцип перетворення сигналу в видиме зображення на екрані осцилографа.
- •Лекція 26
- •3.2.5 Підготовка осцилографа до роботи. Основні регулювання. Вимірювання параметрів сигналів осцилографом
- •Підготовка до включення
- •Тема 3.3 Цифрові осцилографи. Лекція 27
- •3.3.1 Принцип роботи та побудова цифрових осцилографів
- •3.3.3 Використання програмно - апаратного комплексу PicoScope 6 для вимірювання параметрів електричних кіл . Інші приклади віртуальних осцилографів.
- •Кабель usb
- •Затискач
- •Кнопка керування приладом
- •На самому приладі є кнопка зупинки дослідження.
- •Розділ 4 Напівпровідникові пристрої та інтегральні Мікросхеми
- •Тема 4.1 Вимірювання параметрів напівпровідникових діодів та транзисторів.
- •13.9.3. Важливість програмного забезпечення.
- •Лекція 30
- •Тема 4.2 Вимірювання параметрів напівпровідникових діодів та транзисторів.
- •13.9.3. Важливість програмного забезпечення.
- •Тема 4.3 Автоматизація радіоелектронних вимірювань.
- •4.3.1Автоматизація вимірювального процесу. Автоматизація вимірювального процесу
- •4.3.2 Структурні схеми автоматичних засобів вимірювання
- •4.3.3 Автоматичний контроль
- •11.3. Автоматичний контроль
- •11.4. Основні компоненти
Аналізатори спектра
Аналізатори спектра - це вимірювальні прилади, що призначені для експериментального дослідження спектра сигналів. Вони використовуються в діапазонах низьких, високих і надвисоких частот. За методом проведення аналізу спектра в часі їх розділяють на аналізатори спектра послідовної та паралельної дії. Найбільшого розповсюдження одержали аналізатори спектра послідовної дії.
Аналізатори спектра послідовної дії. Спрощена структурна схема такого аналізатора спектра, що ґрунтується на методі фільтрації, показана на Рис.6.52.
Генератор
розгортки ГР виробляє напругу, яка в
часі змінюється лінійно. Ця напруга
підсилюється кінцевим підсилювачем КП
Х і використовується для відхилення
променя вздовж горизонтальної осі Х
ЕПТ. Вона також впливає на керуючий
елемент КЕ частотно-модульованого
генератора (ЧМГ), завдяки чому частота
цього генератора змінюється в часі
лінійно від мініРисьного fmin до
максиРисьного fmax значень. Напруга ЧМГ
подається на один із входів змішувача,
а на другий вхід змішувача через атенюатор
Ат і широкосмуговий підсилювач ШП -
досліджуваний сигнал ux. Оскільки змішувач
є нелінійним елементом, то його вихідна
напруга має складну форму, багату на
гармоніки комбінованих частот
,
де n = 0, 1, 2, 3...; m = 0,1, 2, 3... Ці гармоніки
послідовно виділяються підсилювачем
проміжної частоти ППЧ, як тільки вони
потрапляють у його смугу пропускання.
Після їх детектування детектором Д і
підсилювання кінцевим підсилювачем КП
Y
на екрані ЕПТ виникають відклики-зображення
амплітуд гармонік досліджуваного
сигналу. Крім цих відкликів, на екрані
трубки буде зображення так званого
початкового відклику, який виникає в
проміжок часу, коли миттєве значення
частоти ЧМГ досягне значення частоти
настроювання ППЧ. Частота початкового
відклику приймається за умовний нуль
відліку частот гармонік.
Рис.5. Структурна схема аналізатора спектра.
Значення амплітуд гармонік досліджуваного сигналу визначають у відносних одиницях до амплітуди першої гармоніки. Для визначення частот складових спектра і частотного інтервалу між ними передбачається калібратор. При вмиканні калібратора на екрані ЕПТ з‘являються відклики складових спектра калібратора, частоти яких відомі. Внаслідок цього вздовж осі частот будуть одержані опорні точки частоти. Частоти гармонік досліджуваного сигналу визначають за розміщенням відкликів гармонік сигналу відносно опорних точок частоти.
Основні характеристики аналізатора. До них належать: роздільна здатність; точність відліку частоти і амплітуди; смуга огляду; швидкість аналізу і динамічний діапазон.
Роздільна здатність за частотою - це властивість аналізатора розмежовувати два сусідні за частотою синусоїдні сигнали. Кількісно роздільна здатність визначається як мініРисьний інтервал частот між двома складовими спектра, при якому на екрані ЕПТ можна відрізнити зображення двох спектральних ліній.
Точність
відліку частоти разом з роздільною
здатністю визначає частотну точність
аналізу. Точність відліку частоти
безпосередньо залежить від точності
калібрування приладу, методу аналізу,
виду індикатора, від форми і ширини
позначок на індикаторі, які визначаються
динамічною характеристикою відбірної
(резонансної) системи (пристрою). Чим
ширша позначка, яка спостерігається на
екрані індикатора, тим нижча точність
відліку частоти. Точність відліку
частоти характеризується відношенням
динамічної смуги пропускання DFдин
до резонансної частоти f0 вибірного
пристрою:
.
Чим більше це відношення, тим вища
точність відліку частоти.
Похибку відліку амплітуди визначити важко, бо показ аналізатора залежить не тільки від параметрів і стабільності роботи аналізатора, але й від характеру досліджуваного сигналу. Її значення буде зумовлено роздільною здатністю і часом аналізу. Чим менші роздільна здатність і період аналізу, тим більша похибка вимірювання амплітуди.
Смуга огляду характеризує смугу частот, які одночасно аналізуються. Вона визначається динамічною смугою пропускання DFдин каскадів до змішувача і межами зміни частоти гетеродина. Смуга огляду спектра може змінюватися від сотень герц до десятків мегагерц. Більшість аналізаторів мають змінну смугу огляду: в широкій смузі огляду ведеться більш грубий аналіз спектра з гіршою роздільною здатністю, а у вузькій смузі - точний аналіз спектра. У першому випадку переглядається весь спектр досліджуваного сигналу, а в другому випадку - окремі його ділянки.
Швидкість аналізу спектра характеризує, наскільки швидко здійснюється аналіз досліджуваного сигналу в заданій смузі огляду. Аналіз завжди прагнуть вести з якомога більшою швидкістю. Проте її завжди узгоджують з динамічною смугою пропускання, яка розширюється при збільшенні швидкості аналізу, а отже, погіршується роздільна здатність.
Динамічний діапазон характеризує роботу аналізатора спектра в лінійному режимі. Він визначає здатність аналізатора норРисьно функціонувати при дослідженні сигналів з великим розкидом рівнів окремих складових спектра.
Кількісно
динамічний діапазон D оцінюють або
коефіцієнтом
,
або логарифмічним коефіцієнтом
,
де
-
максиРисьне і мініРисьне значення
сигналу. Звичайно, без зміни чутливості
аналізатора при лінійному масштабі
амплітуд логарифмічний динамічний
діапазон
D
40дБ,
а при використанні атенюатора він може
бути розширений до 120 дБ. Збільшення
динамічного діапазону бажане задля
підвищення роздільної здатності.
Динамічний діапазон обмежується власними шумами і нелінійними викривленнями, які виникають у приладі, а також чутливістю індикатора.