
- •Електронний підручник з дисципліни
- •Лекція 2 Розділ 1. Основи метрологічного забезпечення.
- •Тема 1.1 Метрологія – наукова основа вимірювань.
- •1.1.2 Сигнали вимірювальної інформації.
- •1.1.3 Завади, шуми, наводки в каналах вимірювальних пристроїв
- •Лекція 3
- •1.2.2 Систематичні похибки. Способи зменшення систематичних похибок.
- •1.2.3 Випадкові похибки вимірювання
- •Лекція 4
- •1.2.5 Динамічні похибки вимірювання
- •1.2.6 Підвищення точності засобів вимірювання
- •1.2.7 Класи точності та позначення вимірювальних приладів
- •Метрологічне забезпечення вимірювання.
- •1.3.2 Поняття про метрологічне забеспечення та його основи
- •1.3.3 Мета та основні завдання метрологічного забеспечення
- •1.3.4 Єдність і точність вимірювання
- •Лекція 6
- •1.3.5 Одиниці фізичних величин. Еталони одиниць фізичних величин. Міжнародна система одиниць сі.
- •1.3.6 Державна система забезпечення єдності вимірювань.
- •1.3.5 Одиниці фізичних величин. Еталони одиниць фізичних величин. Міжнародна система одиниць сі.
- •1.3.6 Державна система забезпечення єдності вимірювань
- •Лекція 7 Засоби вимірювання.
- •1.4.1 Засоби вимірювання, за допомогою яких здійснюють операції вимірювання
- •1.4.2 Метрологічні характеристики і класи точності засобів вимірювання
- •1.4.3. Структури засобів вимірювання
- •1.4.4 Класифікація вимірювальних приладів
- •Метрологічна служба України та її функції.
- •1.5.2 Функції державної метрологічної служби
- •1.5.3 Загальні положення та завдання метрологічної експертизи
- •1.5.4 Метрологічна атестація засобів вимірювальної техніки Загальні положення
- •1.5.5 Метрологічна перевірка засобів вимірювальної техніки Загальні положення
- •Розділ 2. Вимірювання параметрів електро і радіоланцюгів.
- •Вимірювальні перетворювачі струму та напруги.
- •2.1.1 Електромеханічні: магнітоелектричні та електромагнітні перетворювачі
- •2.1.2Електродинамічні, феродинамічні, електростатичні та індукційні перетворювачі
- •2.1.2 Електродинамічні, феродинамічні, електростатичні та індукційні перетворювачі
- •2.1.2 Масштабні вимірювальні перетворювачі
- •2.1.3 Вимірювальні підсилювачі
- •2.1.4 Вимірювальні трансформатори струму та напруги
- •2.1.5 Вимірювальні перетворювачі змінних напруг та струмів: діючих, середніх амплітудних значень
- •2.1.6 Фазочутливі перетворювачі,і перетворювачі напруг та струмів в частоту, часові інтервали
- •Аналого-цифрові (ацп) та цифроаналогові (цап)
- •2.1.7 Перетворювачі неелектричних величин. Тензоперетворювачі.
- •2.1.8 Терморезистивний, індуктивний та ємнісний перетворювачі.
- •2.2.1 Різновидності приладів. Умовні позначення приладів. Схеми ввімкнення.
- •2.2.2 Вимірювання струмів та напргу приладами прямої дії та компенсаційним методом.
- •2.2.3 Електронні аналогові та цифрові прилади для вимірювання напруг
- •Тема 2.3 Вимірювання електричного опору, ємності, індуктивності
- •Схеми заміщення
- •Тема 2.4 Вимірювання частоти і інтервалів часу, вимірювання фазового зсуву, вимірювання спектру сигналів, вимірювання амплітудно- частотних характеристик
- •2.4.1 Електромеханічні частотоміри
- •2.4.1 Цифрові методи вимірювання частоти,періоду, інтервалів часу
- •2.4.4 Електродинамічний фазометр
- •2.4.5 Фазообертачі
- •2.4.6 Аналіз спектрів сигналів
- •Принцип дії
- •2.4.7 Вимірювання нелінійних спотворень
- •2.4.8 Вимірювання амплітудно-частотних характеристик
- •Розділ 3 Вимірювальні прилади.
- •Тема 3.1 Вимірювальні генератори.
- •3.1.1 Загальні положення і класифікація вимірювальних генераторів.
- •3.1.2 Генератори низькочастотні, класифікація, характеристика, схеми, принцип дії.
- •Лекція 23
- •3.1.3 Генератори високочастотні, класифікація, характеристика, схеми, принцип дії.
- •3.1.4 Універсальні генератори
- •Тема 3.2 Електронні осцилографи. Призначення, класифікація, побудова.
- •3.1.4 Генератори імпульсних сигналів, використання, схеми, принцип дії
- •3.2.2 Спрощена структурна схема осцилографа, принцип дії. Побудова електронно-променевої трубки.
- •Електронно-променеві осцилографи реального часу
- •Швидкісні, стробоскопічні та запам’ятовуючі осцилографи
- •Аналізатори спектра
- •Вимірювачі нелінійних викривлень
- •Лекція 25
- •Тема 3.2 Електронні осцилографи. Призначення, класифікація, побудова.
- •3.2.3 Повна структурна схема осцилографа, характеристика і призначення блоків схеми.
- •3.3. Структурна схема Осцилографи
- •3.2.4 Принцип перетворення сигналу в видиме зображення на екрані осцилографа.
- •Лекція 26
- •3.2.5 Підготовка осцилографа до роботи. Основні регулювання. Вимірювання параметрів сигналів осцилографом
- •Підготовка до включення
- •Тема 3.3 Цифрові осцилографи. Лекція 27
- •3.3.1 Принцип роботи та побудова цифрових осцилографів
- •3.3.3 Використання програмно - апаратного комплексу PicoScope 6 для вимірювання параметрів електричних кіл . Інші приклади віртуальних осцилографів.
- •Кабель usb
- •Затискач
- •Кнопка керування приладом
- •На самому приладі є кнопка зупинки дослідження.
- •Розділ 4 Напівпровідникові пристрої та інтегральні Мікросхеми
- •Тема 4.1 Вимірювання параметрів напівпровідникових діодів та транзисторів.
- •13.9.3. Важливість програмного забезпечення.
- •Лекція 30
- •Тема 4.2 Вимірювання параметрів напівпровідникових діодів та транзисторів.
- •13.9.3. Важливість програмного забезпечення.
- •Тема 4.3 Автоматизація радіоелектронних вимірювань.
- •4.3.1Автоматизація вимірювального процесу. Автоматизація вимірювального процесу
- •4.3.2 Структурні схеми автоматичних засобів вимірювання
- •4.3.3 Автоматичний контроль
- •11.3. Автоматичний контроль
- •11.4. Основні компоненти
2.4.7 Вимірювання нелінійних спотворень
Под нелинейными искажениями (НИ) понимается любое изменение сигнала, вызывающее искажения передаваемого сообщения и обусловленное нелинейностью тракта. Количественная оценка НИ может быть произведена различными методами: гармоническими, комбинационными, статистическими. Наибольшее применение получили измерители нелинейных искажений предназначенные для измере ния степени искажения формы кривой, т. е. отличия формы сигнала от гармонической. Количественно искажения оценивают двумя коэффициентами: коэффициентом гармоник kГ и коэффициентом нелинейных искажений kНИ.
На практике коэффициент гармоник рассчитывается по формуле
(8.13)
где Ui – амплитуда i-й гармоники.
Значение КГ может изменяться от 0 до 1.
Коэффициент нелинейных искажений рассчитывается по формуле
(8.14)
где U1 – амплитуда первой гармоники.
Значение КНИ может изменяться от 0 до ∞.
Как правило, измерители нелинейных искажений определяют коэффициент гармоник, а коэффициент нелинейных искажений рассчитывают по формуле
(8.15)
При Рисых КНИ можно считать, что КНИ ≈ КГ (в диапазоне КНИ ≤ 0,1 значения КГ и КНИ отличаются менее чем на 1%.
Существующие методы измерения разделяются на спектральный и интегральный.
Спектральный метод реализуется с помощью избирательного устройства, в качестве которого могут быть использованы селективные вольтметры или анализаторы спектра. При этом достаточно измерять относительный (по отношению к U1) уровень высших гармоник. Метод достаточно точен для КГ = 0,01 – 1, но трудоемок. Этот метод целесообразно применять, когда необходимо определить роль каждой гармоники в отдельности.
Наиболее распространенной модификацией метода является метод подавления основной частоты. Он заключается в раздельном измерении среднеквадратического значения сигнала и среднеквадратического значения высших гармоник (без первой) этого же сигнала.
Структурная схема измерителя нелинейных искажений, реализующего интегральный метод, показана на рис. 8.12.
(8.12)
Входное устройство ВУ состоит из аттенюатора и предваритель ного усилителя. Исследуемое напряжение UВХ с входного устройства подается либо на выходное устройство ВыхУ, состоящее из аттенюато ра и согласующего усилителя, либо на избирательный усилитель ИУ. После выходного устройства сигнал подается на вольтметр В.
В первом положении переключателя SA показания вольтметра пропорциональны UВХ:
(8.16)
Во втором - избирательный усилитель, настроенный на частоту первой гармоники, подавляет ее и показания пропорциональны напряжению высших гармоник:
(8.17)
Коэффициент нелинейных искажений
(8.18)
Значение α1 устанавливают аттенюатором входного устройства всегда на определенную отметку шкалы (изменяется K1). Шкалу вольтметра можно градуировать в единицах измеряемого значения. Изменением К2 (аттенюатор выходного устройства) можно изменять пределы измерения прибора.
Избирательный усилитель должен быть перестраиваемым в пределах диапазона частот ИНИ по первой гармонике. В качестве вольтметра необходимо использовать приборы, измеряющие действующее значение тока.
Основными источниками погрешности измерения коэффициента гармоник являются: погрешность вольтметра, неточность настройки избирательного усилителя.
В современных измерителях нелинейных искажений измерение производится автоматически. Одна из возможных структурных схем подобного ИНИ показана на рис. 8.13.
(8.13)
Исследуемый сигнал через входное устройство ВУ подается в узел автоматической регулировки усиления АРУ. На его выходе поддерживается постоянное значение напряжения при изменениях исследуемого сигнала.
С выхода АРУ напряжение поступает в режекторный усилитель РУ, в котором осуществляется автоматическое подавление первой гармоники предварительно усиленного входного сигнала. Узел автоматической подстройки частоты АПЧ управляет частотойрежекции РУ таким образом, чтобы напряжение на его выходе стало миниРисьным. Напряжение высших гармоник поступает на вход усилителя У. Усиленное напряжение высших гармоник измеряется вольтметром среднеквадратического значения, состоя щего из преобразователя Пр и отсчетного устройства ОУ, проградуированного в процентах КНИ.
Кроме рассмотренного способа КНИ можно измерять с по мощью анализатора спектра. В этом случае измеряют действую щие значения всех гармоник и затем рассчитывают коэффициент нелинейных искажений.
К основным характеристикам измерителей нелинейных искаже ний относятся: предел измерения Кни; диапазон частот входного сигнала; ослабление основной частоты; погрешность измерения Кни; остаточное искажение, обусловленное нелинейными искажениями и шумами прибора.
Примером ИНИ является анализатор С6-11, который имеет следующие данные: диапазон частот... 20 Гц...200 кГц; погрешность измерения... ±0,05 кГц в диапазоне частот 20 Гц...20 кГц, + 0,1 кГц в диапазоне 20 кГц...200 кГц; остаточное искажение - 0,05% в диапазоне частот 20 Гц...200 Гц, 0,02% в диапазоне 200 Гц...20 кГц, 0,1% в диапазоне 20 кГц...200 кГц.