- •Електронний підручник з дисципліни
- •Лекція 2 Розділ 1. Основи метрологічного забезпечення.
- •Тема 1.1 Метрологія – наукова основа вимірювань.
- •1.1.2 Сигнали вимірювальної інформації.
- •1.1.3 Завади, шуми, наводки в каналах вимірювальних пристроїв
- •Лекція 3
- •1.2.2 Систематичні похибки. Способи зменшення систематичних похибок.
- •1.2.3 Випадкові похибки вимірювання
- •Лекція 4
- •1.2.5 Динамічні похибки вимірювання
- •1.2.6 Підвищення точності засобів вимірювання
- •1.2.7 Класи точності та позначення вимірювальних приладів
- •Метрологічне забезпечення вимірювання.
- •1.3.2 Поняття про метрологічне забеспечення та його основи
- •1.3.3 Мета та основні завдання метрологічного забеспечення
- •1.3.4 Єдність і точність вимірювання
- •Лекція 6
- •1.3.5 Одиниці фізичних величин. Еталони одиниць фізичних величин. Міжнародна система одиниць сі.
- •1.3.6 Державна система забезпечення єдності вимірювань.
- •1.3.5 Одиниці фізичних величин. Еталони одиниць фізичних величин. Міжнародна система одиниць сі.
- •1.3.6 Державна система забезпечення єдності вимірювань
- •Лекція 7 Засоби вимірювання.
- •1.4.1 Засоби вимірювання, за допомогою яких здійснюють операції вимірювання
- •1.4.2 Метрологічні характеристики і класи точності засобів вимірювання
- •1.4.3. Структури засобів вимірювання
- •1.4.4 Класифікація вимірювальних приладів
- •Метрологічна служба України та її функції.
- •1.5.2 Функції державної метрологічної служби
- •1.5.3 Загальні положення та завдання метрологічної експертизи
- •1.5.4 Метрологічна атестація засобів вимірювальної техніки Загальні положення
- •1.5.5 Метрологічна перевірка засобів вимірювальної техніки Загальні положення
- •Розділ 2. Вимірювання параметрів електро і радіоланцюгів.
- •Вимірювальні перетворювачі струму та напруги.
- •2.1.1 Електромеханічні: магнітоелектричні та електромагнітні перетворювачі
- •2.1.2Електродинамічні, феродинамічні, електростатичні та індукційні перетворювачі
- •2.1.2 Електродинамічні, феродинамічні, електростатичні та індукційні перетворювачі
- •2.1.2 Масштабні вимірювальні перетворювачі
- •2.1.3 Вимірювальні підсилювачі
- •2.1.4 Вимірювальні трансформатори струму та напруги
- •2.1.5 Вимірювальні перетворювачі змінних напруг та струмів: діючих, середніх амплітудних значень
- •2.1.6 Фазочутливі перетворювачі,і перетворювачі напруг та струмів в частоту, часові інтервали
- •Аналого-цифрові (ацп) та цифроаналогові (цап)
- •2.1.7 Перетворювачі неелектричних величин. Тензоперетворювачі.
- •2.1.8 Терморезистивний, індуктивний та ємнісний перетворювачі.
- •2.2.1 Різновидності приладів. Умовні позначення приладів. Схеми ввімкнення.
- •2.2.2 Вимірювання струмів та напргу приладами прямої дії та компенсаційним методом.
- •2.2.3 Електронні аналогові та цифрові прилади для вимірювання напруг
- •Тема 2.3 Вимірювання електричного опору, ємності, індуктивності
- •Схеми заміщення
- •Тема 2.4 Вимірювання частоти і інтервалів часу, вимірювання фазового зсуву, вимірювання спектру сигналів, вимірювання амплітудно- частотних характеристик
- •2.4.1 Електромеханічні частотоміри
- •2.4.1 Цифрові методи вимірювання частоти,періоду, інтервалів часу
- •2.4.4 Електродинамічний фазометр
- •2.4.5 Фазообертачі
- •2.4.6 Аналіз спектрів сигналів
- •Принцип дії
- •2.4.7 Вимірювання нелінійних спотворень
- •2.4.8 Вимірювання амплітудно-частотних характеристик
- •Розділ 3 Вимірювальні прилади.
- •Тема 3.1 Вимірювальні генератори.
- •3.1.1 Загальні положення і класифікація вимірювальних генераторів.
- •3.1.2 Генератори низькочастотні, класифікація, характеристика, схеми, принцип дії.
- •Лекція 23
- •3.1.3 Генератори високочастотні, класифікація, характеристика, схеми, принцип дії.
- •3.1.4 Універсальні генератори
- •Тема 3.2 Електронні осцилографи. Призначення, класифікація, побудова.
- •3.1.4 Генератори імпульсних сигналів, використання, схеми, принцип дії
- •3.2.2 Спрощена структурна схема осцилографа, принцип дії. Побудова електронно-променевої трубки.
- •Електронно-променеві осцилографи реального часу
- •Швидкісні, стробоскопічні та запам’ятовуючі осцилографи
- •Аналізатори спектра
- •Вимірювачі нелінійних викривлень
- •Лекція 25
- •Тема 3.2 Електронні осцилографи. Призначення, класифікація, побудова.
- •3.2.3 Повна структурна схема осцилографа, характеристика і призначення блоків схеми.
- •3.3. Структурна схема Осцилографи
- •3.2.4 Принцип перетворення сигналу в видиме зображення на екрані осцилографа.
- •Лекція 26
- •3.2.5 Підготовка осцилографа до роботи. Основні регулювання. Вимірювання параметрів сигналів осцилографом
- •Підготовка до включення
- •Тема 3.3 Цифрові осцилографи. Лекція 27
- •3.3.1 Принцип роботи та побудова цифрових осцилографів
- •3.3.3 Використання програмно - апаратного комплексу PicoScope 6 для вимірювання параметрів електричних кіл . Інші приклади віртуальних осцилографів.
- •Кабель usb
- •Затискач
- •Кнопка керування приладом
- •На самому приладі є кнопка зупинки дослідження.
- •Розділ 4 Напівпровідникові пристрої та інтегральні Мікросхеми
- •Тема 4.1 Вимірювання параметрів напівпровідникових діодів та транзисторів.
- •13.9.3. Важливість програмного забезпечення.
- •Лекція 30
- •Тема 4.2 Вимірювання параметрів напівпровідникових діодів та транзисторів.
- •13.9.3. Важливість програмного забезпечення.
- •Тема 4.3 Автоматизація радіоелектронних вимірювань.
- •4.3.1Автоматизація вимірювального процесу. Автоматизація вимірювального процесу
- •4.3.2 Структурні схеми автоматичних засобів вимірювання
- •4.3.3 Автоматичний контроль
- •11.3. Автоматичний контроль
- •11.4. Основні компоненти
2.1.2Електродинамічні, феродинамічні, електростатичні та індукційні перетворювачі
2.1.2 Електродинамічні, феродинамічні, електростатичні та індукційні перетворювачі
Електродинамічні та феродинамічні перетворювачі і прилади електродинамічної системи, побудовані на їх основі, застосовують для вимірювання потужності, струму, напруги у колах постійного та змінного струмів. Крім того, у колах змінного струму електродинамічні прилади застосовують як частотоміри та фазометри.
Електродинамічний прилад складається з таких основних частин (рис.2.1.2.1, а): нерухомої котушки 1, яку
вмикають, як правило, послідовно зі споживачем; рухомої котушки 2, закріпленої на осі, яку вмикають паралельно споживачеві; спіральних пружин 3, які створюють момент протидії і за допомогою яких струм подається у рухому котушку; стрілки 4, жорстко скріпленої з рухомою котушкою, та шкали з нанесеними поділками і цифрами.
Принцип дії приладів електродинамічної системи ґрунтується на взаємодії провідників зі струмом І1 рухомої котушки з магнітним полем, створеним струмом І2 у нерухомій котушці.
Ця взаємодія характеризується обертальним моментом, який визначається за формулою:
де
kM
— конструктивна стала приладу.
Феродинамічний прилад (рис.2.1.2.1, б) відрізняється від електродинамічного лише тим, що його нерухомі котушки мають магнітопровід 5 з магнітом'якого матеріалу.
Електродинамічні прилади застосовують найчастіше як ватметри для вимірювання потужності у колах як постійного, так і змінного струмів. У такому разі нерухома котушка вмикається послідовно зі споживачем, а рухома – паралельно.
Послідовно з рухомою котушкою вмикається додатковий опір Rдод для зменшення власного споживання енергії і підвищення точності. Струм у рухомій котушці ІU, згідно із законом Ома, прямо пропорційний напрузі на споживачеві U:
де RU, Rдод – опори рухомої котушки і додаткового резистора.
Обертальний
момент електродинамічного ватметра
прямо пропорційний активній
потужності, тому шкала електродинамічних
ватметрів рівномірна.
В електродинамічних та феродинамічних амперметрах нерухому і рухому котушки з'єднують послідовно.
У такому випадку через котушки протікає один і той же струм
і
обертальний момент пропорційний квадрату
струму:
.
В
електродинамічних вольтметрах послідовно
з'єднують нерухому і рухому котушки,
а також додатковий резистор. Струм
у такому послідовному з'єднанні
Обертальний момент пропорційний квадрату напруги
Електродинамічні прилади придатні для роботи як в колах постійного, так і змінного струму. У колах змінного струму електродинамічні прилади мають найвищу точність порівняно з іншими електромеханічними приладами. Проте на роботу електродинамічних приладів сильно впливають зовнішні магнітні поля.
Прилади електростатичної системи застосовуються головним чином як вольтметри для вимірювання напруг у колах постійного та змінного струму.
Вольтметр електростатичної системи складається з таких основних частин (рис. 2.1.2.2): системи нерухомих електродів 1; системи рухомих електродів 2; спіральної пружини 3 для створення моменту протидії та для підведення напруги до рухомих електродів; стрілки 4, закріпленої на осі разом із системою рухомих електродів.
Якщо до рухомих електродів підвести потенціал одного знака, а до нерухомих — іншого, то електроди матимуть заряди протилежних знаків і притягуватимуться один до одного з силою, яка пропорційна заряду електродів:
Оскільки заряд прямо пропорційний напрузі, то
,
де С — ємність між електродами. Сила взаємодії, а також обертальний момент будуть прямо пропорційні квадрату прикладеної до електродів напруги:
Позитивними якостями приладів електростатичної системи є:
здатність вимірювати великі напруги безпосередньо без додаткових пристроїв;
придатність для вимірювання як постійних, так і змінних напруг;
незначна потужність, яку споживають прилади;
широкий частотний діапазон вимірювання.
Недоліками цих приладів слід вважати низьку точність та чутливість, а також сильний вплив зовнішніх чинників (вологості, електричних полів).
Індукційні прилади застосовуються здебільшого як лічильники електричної енергії.
Індукційний лічильник електричної енергії (рис. 2.1.2.3) складається з електромагніту 1 з обмоткою, по якій
проходить струм споживача (обмотка струму); електромагніту 2 з обмоткою, яка увімкнена паралельно споживачеві (обмотка напруги); постійного магніту 3, призначеного для створення гальмівного моменту; легкого алюмінієвого диску 4, який вільно обертається на осі; механічного редуктора для зменшення частоти обертання диска в задане число разів та механізму відліку.
Принцип дії індукційного лічильника електричної енергії ґрунтується на взаємодії магнітних полів, електромагнітів зі струмами, наведеними за законом електромагнітної індукції в алюмінієвому диску.
В результаті такої взаємодії до диска прикладено обертальний момент, значення якого пропорційне активній потужності споживача:
де kM — коефіцієнт пропорційності.
На диск діє також гальмівний момент, який виникає від взаємодії струмів, наведених в диску, з магнітним полем постійного магніту. Значення гальмівного моменту прямо пропорційне частоті обертання диска:
де kпр — коефіцієнт пропорційності.
Коли
настане рівновага моментів, тобто
частота обертання диска буде прямо
пропорційна активній потужності
споживання:
Кількість обертів N за проміжок часу Δt буде прямо пропорційна електричній енергії W, яку споживає споживач за час Δt:
Крім однофазних лічильників, випускаються також трифазні лічильники для вимірювання витрат електричної енергії в трифазних енергетичних системах.
До переваг електромеханічних лічильників енергії слід віднести їх простоту, здатність до перевантажень, а також здатність зберігати покази під час вимикання живлення.
Недоліками індукційних лічильників є невисока точність, залежність показів від температури та частоти. Останнім часом інтенсивно розробляються і впроваджуються електронні та цифрові лічильники енергії.
