- •Основы радиотехники
- •Основы радиотехники
- •Электромагнитные колебания
- •Основные принципы передачи сигналов с помощью электромагнитных волн
- •История изобретения и развития радио
- •Основные принципы формирования электромагнитных колебаний. Электромагнитное поле и его основные характеристики
- •Радиоволна и ее основные характеристики Принцип формирования радиосигналов. Модуляция
- •Р ис 3. Возбуждение электромагнитного излучения в свободном пространстве, окружающем провод, в котором протекает переменный ток
- •Основные принципы приема и обработки радиосигналов. Антенные устройства. Селекция радиосигналов
- •Преобразование и детектирование сигналов
- •Предельное значение коэффициента передачи напряжения фазового детектора
- •Усиление сигналов
- •Основные направления развития радиотехники
- •Радиопередающие устройства Общие сведения. Принципы генерации частоты передатчика Назначение, классификация и основные характеристики радиопередающих устройств
- •Генераторы с внешним возбуждением. Основные схемы включения активных элементов и питания.
- •Р ис. 2. Схемы включения биполярных транзисторов:
- •Автогенераторы, общие сведения и принцип работы
- •Генераторы на лампах бегущей и обратной волны
- •Р ис. 6. Напряженность тангенциальной составляющей электрического поля замедленной волны вдоль зс.
- •Магнетронные генераторы, митроны, молекулярные (квантовые) генераторы и усилители
- •Принципы стабилизации частоты. Управление колебаниями передающего устройства. Дестабилизирующие факторы, влияющие на работу передатчиков
- •Основные принципы стабилизации частоты. Параметрическая и кварцевая стабилизация
- •Синтезаторы частот
- •Ларингофоны, телефоны. Основные способы модуляции колебаний. Манипуляция и импульсная модуляция в передатчиках
- •Р ис.6. Угольный ларингофон:
- •Р ис. 7. Электромагнитный микрофон с дифференциальной магнитной системой:
- •Радиоприемные устройства Общие сведения. Прием и усиление сигналов высокой частоты Назначение, классификация и основные характеристики радиоприемных устройств
- •Селекция радиосигналов. Входные цепи и усилители высокой частоты
- •Принцип супергетеродинного приема. Детектирование и усиление сигналов низкой частоты. Преобразователи частоты.
- •Усилители промежуточной частоты.
- •Р ис.3. Схемы полосовых усилителей промежуточной частоты: а – на пентодах; б – на транзисторах.
- •Детектирование сигналов.
- •Вопрос 4. Усиление сигналов низкой частоты.
- •Ручная и автоматическая регулировка усиления, борьба с помехами радиоприему. Назначение и основные принципы реализации автоматической регулировки усиления
- •Ручная регулировка усиления
- •Помехи радиоприему и основные методы борьбы с ними
- •Радиоэлектронное оборудование самолетов и вертолетов Радиосвязное и радионавигационное оборудование Общие сведения об авиационных радиосвязных устройствах
- •Принципы построения самолетных радиостанций.
- •Аппаратура записи и воспроизведения речевой информации.
- •Принципы построения, классификация и основные требования, предъявляемые к самолетным радионавигационным устройствам.
- •Радиолокационное оборудование. Сущность радиолокации.
- •Методы измерения координат и параметров движения целей.
- •Назначение, классификация и основные характеристики радиолокационных станций.
- •Специальное радиоэлектронное оборудование. Общие сведения.
- •Радиоэлектронные помехи, способы их создания. Принципы построения самолетных станций радиоэлектронной борьбы.
- •Виды радиоэлектронных помех.
- •Способы постановки радиоэлектронных помех.
- •Понятие радиоэлектронной разведки. Принципы построения самолетных станций радиоэлектронной разведки.
- •Назначение, состав и принцип действия системы опознавания государственной принадлежности.
- •Рекомендуемая литература
- •Оглавление
- •220096, Г. Минск, ул. Уборевича,77
Магнетронные генераторы, митроны, молекулярные (квантовые) генераторы и усилители
Магнетронный генератор
Многорезонаторный магнетрон — это автогенератор гармонических колебаний. В соответствии с классификацией он относится к ППВМ. Предложен и разработан советскими специалистам Н. Ф, Алексеевым и Д. Е. Маляровым в 1938—1940 гг. Появление магнетрона привело к качественному прорыву, ускорению в развитии РЭС СВЧ, особенно радиолокационных. К настоящему времени промышленностью освоен выпуск магнетронов широкой номенклатуры в диапазоне волн 0,1—10 см на мощности до 10 МВт в импульсе и до десятков киловатт в непрерывном режиме.
О внешнем виде магнетрона (без магнита) дает представление рис. 9. На рис. 10 показана конструкция анодного блока.
Анод магнетрона — это свернутая в тор ЗС с четным числом резонаторов N=8 - 38. Выполняется анод из массивного монолита чистой меди.
Для лучшего охлаждения он контактно соединяется с теплоотводящим шасси, снабжается радиатором воздушного охлаждения или охватывается системой жидкостного термостатирования. На рис. 10, например, показан магнетрон с радиатором 3 воздушного охлаждения. Отбор энергии СВЧ-колебаний осуществляется из одного резонатора посредством петли связи 9 или щели.
В распространенных конструкциях применяются резонаторы следующих форм: щель с цилиндрическим отверстием, лопаточного типа, в виде щели. Первые два типа присущи магнетронам сантиметрового, третий — миллиметрового диапазонов волн. По центру ЗС располагается мощный цилиндрический подогревный катод, обладающий хорошими эмиссионными возможностями. Радиус катода в 1,5—3 раза меньше радиуса ЗС. Параллельно катоду в пространстве взаимодействия создается однородное магнитное поле (В = 2 - 3 Вкр) постоянным магнитом или электромагнитом.
Рис. 9. Внешний вид маг- Рис. 10. Устройство магнетрона: нетрона без магнита: 1 – анодный блок; 2 – волновод; 1 – анодный блок; 2 – вол- 3 – радиатор воздушного охлажде- новод; 3 – радиатор воздуш- ния; 4 – выводы катода и накала; ного охлаждения; 4 – выво- 5 – резонатор; 6 – связки; 7 – про- ды катода и накала. странство взаимодействия; 8 – кон- цевые экраны; 9 – петля связи; 10 - СВЧ-дроссели; 11 – подогревной катод.
Катод магнетрона подключается к «минусу» источника питания, анод — к «плюсу». Ввиду малого зазора между катодом и ЗС постоянное электрическое поле тоже можно считать однородным в пространстве взаимодействия.
Митрон
Митрон, или магнетрон, настраиваемый напряжением, является конструктивной реализацией теоретического вывода о пропорциональной зависимости частоты генерируемых колебаний от анодного напряжения (ЭУЧ) при постоянном токе Iо. Но ток тоже растет при увеличении анодного напряжения и, в свою очередь, уменьшает частоту генерации. Это явление получило название электронного: смещения частоты (ЭСЧ).
Для исключения ЭСЧ ток в митроне стабилизирован, а возможность ЭУЧ расширена выбором широкополосной ЗС.
Молекулярные (квантовые) генераторы и усилители
Общие сведения
Молекулярными генераторами (усилителями) называются квантовые генераторы (усилители), отличающиеся тем, что в них электромагнитные колебания генерируются (усиливаются) за счет вынужденных квантовых переходов молекул, в то время как в остальных квантовых генераторах используются квантовые переходы других микрочастиц (атомов, ионов).
Как и в любом электронном приборе, в квантовых приборах первичным источником высокочастотной энергии являются электроны. Но в активных приборах обычного типа используются так называемые «свободные» электроны, движение которых с достаточной точностью описывается законами классической механики. В квантовых приборах используются так называемые «связанные» электроны, входящие в состав атомов того или иного вещества. Поведение таких электронов, как и атомов, подчиняется законам квантовой механики, в связи, с чем квантовые приборы и получили свое название.
Квантовые генераторы — это принципиально новые источники излучения. Впервые явление вынужденного (стимулированного, индуцированного) излучения было использовано для усиления и генерации в диапазоне длин волн 0,34 —10 мм. Приборы, работавшие на этом принципе, получили название мазеры, что означает усиление микроволн с помощью вынужденного излучения. Появившиеся позднее приборы подобного рода, но работающие в оптическом диапазоне спектра электромагнитных колебаний стали называться лазерами. Этот термин образовался в результате замены в слове «мазер» буквы «м» буквой «л» (от английского написания слова «свет»). При этом термин «свет» обозначает не только видимую (λ≈0,38-0,77 мкм), но и ультрафиолетовую (λ≈0,01-0,38 мкм), и инфракрасную (λ≈0,77-340 мкм) области спектра электромагнитных колебаний.
