
- •Розділ 1 Предмет, історія, методи і значення фізіології
- •Предмет фізіології
- •1.2. Фізіологічні дисципліни
- •1.3. Зв'язки фізіології з іншими науками
- •1.4. Історія фізіології
- •1.5. Методи фізіологічних досліджень
- •1.6. Значення фізіології людини і тварин
- •Розділ 2 Організм і його фізіологічні функції
- •2.1. Біологічні реакції
- •2.2. Регуляція фізіологічних функцій
- •Розділ 3 Біоелектричні потенціали
- •3.1. Мембранний потенціал спокою
- •3.2. Потенціали дії
- •3.3. Поширення потенціалів дії
- •Розділ 4 Закономірності подразнення клітин електричним струмом
- •4.1. Аналіз порогових умов подразнення
- •4.2. Залежність порогової сили струму від його тривалості
- •4.3. Залежність порогової сили струму від крутості наростання його сили
- •4.4. Полярний закон
- •4.5. Фізичний електротон
- •4.6. Локальний потенціал
- •4.7. Закон "все або нічого"
- •4.8. Фізіологічний електротон
- •4.9. Зміни збудливості під час збудженні
- •5.1.2. Рухові (нейромоторні) одиниці
- •5.1.3. Фізіологічні властивості скелетних м 'язів
- •5.1.4. Мембрано-міофібрилярний зв'язок
- •5.1.5. Види скорочення м'язів
- •5.1.6. Механізм скорочення м'язів
- •5.1.7. Енергетика м'язового скорочення
- •5.1.8. Теплопродукція м'язів
- •5.1.9. Робота м 'язів
- •5.1.10. Сипа м 'язів
- •5.1.11. Втома м'язів
- •5.1.13. Робоча гіпертрофія м 'язів і атрофія від бездіяльності
- •5.1.14. Тонус м'язів
- •5.2. Фізіологія гладеньких м'язів
- •Розділ 6 Загальна фізіологія нервової системи
- •6.1. Будова і функції нейронів
- •6.2. Класифікація нейронів
- •6.3. Нейроглія
- •6.4. Нервові волокна
- •6.5. Закони проведення збудження нервовими волокнами
- •6.6. Аксонний транспорт
- •6.7. Фізіологія синапсів
- •6.7.1. Будова і механізм передачі збудження через хімічні синапси
- •6.7.2. Постсинаптичне гальмування
- •6.7.3. Пресинаптичне гальмування
- •6.7.4. Електрична передача збудження
- •6.7.5. Медіатори
- •6.8. Рефлекторна діяльність нервової системи
- •6.8.1. Класифікація рефлексів
- •6.8.2. Рефлекторна дуга
- •6.8.3. Нервові центри та їх властивості
- •6.8.4. Координація рефлекторних процесів
- •Розділ 7 Фізіологія центральної нервової системи
- •7.1. Спинний мозок
- •7.1.1. Рефлекторна діяльність спинного мозку
- •7.1.2. Провідникова функція спинного мозку
- •7.2. Головний мозок
- •7,2.1. Довгастий мозок і вароліїв міст
- •7.2.2. Середній мозок
- •7.2.3. Мозочок
- •7.2.4. Проміжний мозок
- •7.2.4.1. Таламус
- •7.2.4.2. Гіпоталамус
- •7.2.5. Кінцевий мозок
- •7.2.5.1. Базальні ганглії
- •7.2.5.2. Лімбічна система
- •7.2.5.3. Кора великих півкуль
- •Розділ 8 Фізіологія вищої нервової діяльності
- •8.1. Природжені форми поведінки
- •8.2. Набуті форми поведінки
- •8.3. Закономірності умовно-рефлекторної діяльності
- •8.4. Гальмування умовних рефлексів
- •8.5. Аналітико-синтетична діяльність кори головного мозку
- •8.6. Типи вищої нервової діяльності людини і тварин
- •Розділ 9 Фізіологічні основи вищої нервової (психічної) діяльності людини
- •9.1. Перша і друга сигнальні системи
- •9.2. Анатомо-фізіологічні основи мови
- •9.3. Фізіологія голосового апарату
- •9.4. Типи вищої нервової діяльності людини
- •9.5. Фізіологічні основи мислення
- •9.6. Свідомість як функція мозку
- •9.8. Функціональна асиметрія мозку людини
- •9.9. Фізіологія сну
- •9.10. Онтогенез кори та вищої нервової діяльності людини
- •9.11. Патологічні зміни вищої нервової діяльності людини
- •Розділ 10 Фізіологія аналізаторів
- •10.1. Зоровий аналізатор
- •10.2. Слуховий аналізатор
- •10.3. Вестибулярний аналізатор
- •10.4. Нюховий аналізатор
- •10.5. Смаковий аналізатор
- •10.6. Соматосенсорний аналізатор
- •Розділ 11 Автономна (вегетативна) нервова система
Розділ 6 Загальна фізіологія нервової системи
В організмі більшості тварин і людини нервова система відіграє особливо важливу роль. Вона регулює, зв'язує й інтегрує різні тканини і органи, забезпечуючи цілісність багатоклітинних організмів. Зміни діяльності клітин, тканин і органів здійснюються нервовою системою рефлекторно. Нервовий механізм регуляції є найбільш досконалим, оскільки здійснюється швидко, точно і надійно. У вищих тварин і людини нервова система служить матеріальним субстратом психологічних процесів: відчуття, сприймання, пам'яті, мислення, уваги, волі й емоцій.
Будова нервової системи вдосконалювалась з ускладненням рухової активності тварин. Вперше вона сформувалась у кишковопорожнинних у вигляді дифузної, або сітчастої нервової системи. Нервові клітини знаходяться у них під епітелієм, розкидані по всьому тілу і сполучені між собою відростками.
Вдосконалення рухової активності привело до концентрації нервових клітин і утворення вузлового, або гангліонарного типу нервової системи. У вищих безхребетних (кільчасті черви, членистоногі) нервові клітини концентруються у підглотковому і надглотковому гангліях, а також - у гангліях черевного нервового ланцюжка. У молюсків сформувався розкидановузловий тип нервової системи. Стосовно вузлової нервової системи можна говорити про її поділ на центральну і периферичну.
Третім, найбільш досконалим, типом є трубчаста нервова система хордових. Вона має чіткий поділ на центральну (спинний і головний мозок) і периферичну (нерви і нердові сплетіння) нервові системи.
Ускладнення сенсорних, аналізаторних і координуючих рухи процесів привело до їх концентрування у головних відділах центральної нервової системи. Такий процес називають цефалізацією функцій. У процесі цефалізації розвивається ієрархія, тобто підпорядкування нижчерозташованих центрів вищерозташованим. Вищою формою цефалізації є кортикалізація функцій у вищих хребетних, коли всі структури нервової системи знаходяться під контролем кори великих півкуль головного мозку.
6.1. Будова і функції нейронів
Складні і життєво важливі функції нервова система виконує за участю нервових клітин, або нейронів, які спеціалізовані до сприймання, оброблення, збереження і передавання інформації. Нейрони об'єднуються у ланцюги і центри, які утворюють функціональні системи мозку. Об'єднання нервових клітин здійснюється за допомогою синаптичних контактів, важливою функцією яких є забезпечення передачі електричних сигналів з одного нейрона на інший. Нейрони утворюють синаптичні контакти і з іншими типами клітин: з рецепторними і ефекторними (м'язовими і залозистими).
Кількість нейронів незначна у примітивних тварин і досягає у людини до 50-ти млрд. Синаптичні контакти оцінюються астрономічними цифрами (1015-1016).
Виконуючи основну функцію (оброблення інформації), нейрони підтримують власну структуру. Кожен нейрон формується з одного нейробласта і є, отже, генетичною одиницею. У тілі нейрона знаходиться ядро з ядерцем, де зберігається генетична інформація, відповідно до якої синтезуються речовини, що визначають форму, хімізм і функції кожного нейрона. Синтезовані у тілі речовини транспортуються у відростки й у цьому полягає трофічна функція тіла. Після відокремлення відростка від тіла його дистальна частина дегенерує, а потім відбувається його регенерація.
Хоча нервову клітину описав Ян Пуркиньє ще у 1836 році, до кінця XIX ст. велись суперечки: чи можна застосувати клітинну теорію до пояснення будови мозку. Тривалий час розглядали нервову систему як безперервний синцитій, усі елементи якого сполучені прямим цитоплазматичним зв'язком. Важливі докази індивідуальності нервових клітин отримав Р.Кахал у кінці XIX ст.
З використанням електронної мікроскопії сьогодні переконливо доведено, що вся нервова клітина (дендрити, тіло і аксон) вкрита плазматичною мембраною і між окремими нейронами відсутній прямий цитоплазматичний зв'язок.
У нейроні розрізняють чотири основні частини: тіло (сома, перикаріон), дендрити, аксон і аксонні закінчення, або терміналі. Кожна з цих частин виконує свої функції.
У тілі містяться органоїди, необхідні для життєдіяльності всього нейрона (ядро, рибосоми, ендоплазматичний ретикулум, апарат Гольджі, мітохондрії, лізосоми, мікротрубочки і мікрофіламенти). Ендоплазматичний ретикулум добре виражений і свідчить про високу синтетичну діяльність соми. На білок припадає 80 % сухої маси нейрона, 20 % - на ліпіди і 0,4 % - на глікоген. Нервові клітини хребетних отримують енергію тільки аеробним шляхом. Центральна нерпова система людини споживає 20 % загальної кількості кисню. Припинення постачання киснем головного мозку людини на 10 с призводить до втрати свідомості, а на 10-12 хв викликає незворотні пошкодження. Уже говорилось, що тіло виконує трофічну функцію відносно відростків. Окрім того, мембрана тіла більшості нейронів вкрита синапсами, тому відіграє роль у сприйманні і обробленні інформації, тобто виконує інтегративну функцію.
Дендрити (dendron - дерево) - чисельні короткі (до 1 мм) відростки, які дуже розгалужені і з віддаленням від тіла стають тонкими. Дендрити мультиполя-рних нейронів мають шипики - короткі (2-3 мкм) відростки. На одному нейроні Пуркиньє мозочка міститься близько 40 тис. шипиків. На шипиках розміщені синаптичні контакти. Дендрити густо вкриті синапсами, через які надходить до них інформація. Дендритна зона нейронів добре розвинута і забезпечує конвергентний збір інформації, яка надходить через синапси від інших нейронів. В активному стані кожна терміналь вивільнює медіатор, який змінює місцеву проникність мембрани дендрита. У результаті виникає постсинаптичиий потенціал, який передається від дендритів до початкового сегмента. Головні органоїди тіла нейрона заходять у стовбури дендритів. У дендритах відсутні синаптичні міхурці.
Нейрон має один головний відросток, який називають аксоном (axis - вісь), або нейритом. Основна функція аксона - проведення нервових імпульсів до інших клітин - нервових, м'язових та секреторних. Більшість аксонів є довгими (до 1 м) нитчастими відростками, які відходять від тіла нейрона, утворюючи у цьому місці конусоподібний виступ - аксонний горбик. Початок аксона (початковий сегмент) позбавлений мієлінової оболонки. Аксонний горбик і початковий сегмент утворюють тригерну зону, в якій виникають постсинаптичні потенціали дії. У аксоні, в тому числі і у початковому сегменті, відсутній гранулярний ендоплазматичний ретикулум, тому синтез білка неможливий. По всій довжині аксон має мікротрубочки і мікрофіламенти, мітохондрії і синаптичні міхурці.
Дендрити і аксони зберігають свою форму завдяки мікротрубочкам, які забезпечують також транспорт різних речовин з тіла нейронів у відростки.
Аксон може утворювати колатералі, по яких поширюються імпульси на різні нейрони. Вони можуть бути зворотними, горизонтальними або косими. Колатералі аксонів об'єднують пірамідні і зірчасті нейрони у функціональні популяції, можуть утворювати замкнуті ланцюги, якими циркулює збудження.
Аксони утворюють кінцеві галуження, терміналі, або телодендрії. Вони позбавлені мієлінової оболонки, тому швидкість поширення збудження у них невелика. Плазматична мембрана закінчень формує пресинаптичну частину синап-сів. Форма закінчень може бути різною, а найчастіша вона булавоподібна. У цитоплазмі пресинаптичних закінчень наявні мітохондрії і синаптичні міхурці. Мембрана пресинаптичних закінчень містить специфічні рецептори, чутливі до медіаторів і модуляторів. Окрім того, у мембрані пресинаптичних закінчень наявні кальцієві канали, що забезпечують надходження у терміналі кальцію. Терміналі пристосовані для передачі збудження на інші нейрони або ефекторні клітини.
Отже, інформація надходить до нейронів через чисельні синапси, розташовані на дендритах і тілі. Вона передається нейроном до інших нейронів або клітин робочих органів через синапси, що утворюють нервові закінчення аксона нейрона.
Тому плазматична мембрана тіла, дендритів і нервових закінчень більш чутлива до хімічних речовин, ніж мембрана аксона. У мембрані тіла нейронів також наявні кальцієві канали.