
- •Розділ 1 Предмет, історія, методи і значення фізіології
- •Предмет фізіології
- •1.2. Фізіологічні дисципліни
- •1.3. Зв'язки фізіології з іншими науками
- •1.4. Історія фізіології
- •1.5. Методи фізіологічних досліджень
- •1.6. Значення фізіології людини і тварин
- •Розділ 2 Організм і його фізіологічні функції
- •2.1. Біологічні реакції
- •2.2. Регуляція фізіологічних функцій
- •Розділ 3 Біоелектричні потенціали
- •3.1. Мембранний потенціал спокою
- •3.2. Потенціали дії
- •3.3. Поширення потенціалів дії
- •Розділ 4 Закономірності подразнення клітин електричним струмом
- •4.1. Аналіз порогових умов подразнення
- •4.2. Залежність порогової сили струму від його тривалості
- •4.3. Залежність порогової сили струму від крутості наростання його сили
- •4.4. Полярний закон
- •4.5. Фізичний електротон
- •4.6. Локальний потенціал
- •4.7. Закон "все або нічого"
- •4.8. Фізіологічний електротон
- •4.9. Зміни збудливості під час збудженні
- •5.1.2. Рухові (нейромоторні) одиниці
- •5.1.3. Фізіологічні властивості скелетних м 'язів
- •5.1.4. Мембрано-міофібрилярний зв'язок
- •5.1.5. Види скорочення м'язів
- •5.1.6. Механізм скорочення м'язів
- •5.1.7. Енергетика м'язового скорочення
- •5.1.8. Теплопродукція м'язів
- •5.1.9. Робота м 'язів
- •5.1.10. Сипа м 'язів
- •5.1.11. Втома м'язів
- •5.1.13. Робоча гіпертрофія м 'язів і атрофія від бездіяльності
- •5.1.14. Тонус м'язів
- •5.2. Фізіологія гладеньких м'язів
- •Розділ 6 Загальна фізіологія нервової системи
- •6.1. Будова і функції нейронів
- •6.2. Класифікація нейронів
- •6.3. Нейроглія
- •6.4. Нервові волокна
- •6.5. Закони проведення збудження нервовими волокнами
- •6.6. Аксонний транспорт
- •6.7. Фізіологія синапсів
- •6.7.1. Будова і механізм передачі збудження через хімічні синапси
- •6.7.2. Постсинаптичне гальмування
- •6.7.3. Пресинаптичне гальмування
- •6.7.4. Електрична передача збудження
- •6.7.5. Медіатори
- •6.8. Рефлекторна діяльність нервової системи
- •6.8.1. Класифікація рефлексів
- •6.8.2. Рефлекторна дуга
- •6.8.3. Нервові центри та їх властивості
- •6.8.4. Координація рефлекторних процесів
- •Розділ 7 Фізіологія центральної нервової системи
- •7.1. Спинний мозок
- •7.1.1. Рефлекторна діяльність спинного мозку
- •7.1.2. Провідникова функція спинного мозку
- •7.2. Головний мозок
- •7,2.1. Довгастий мозок і вароліїв міст
- •7.2.2. Середній мозок
- •7.2.3. Мозочок
- •7.2.4. Проміжний мозок
- •7.2.4.1. Таламус
- •7.2.4.2. Гіпоталамус
- •7.2.5. Кінцевий мозок
- •7.2.5.1. Базальні ганглії
- •7.2.5.2. Лімбічна система
- •7.2.5.3. Кора великих півкуль
- •Розділ 8 Фізіологія вищої нервової діяльності
- •8.1. Природжені форми поведінки
- •8.2. Набуті форми поведінки
- •8.3. Закономірності умовно-рефлекторної діяльності
- •8.4. Гальмування умовних рефлексів
- •8.5. Аналітико-синтетична діяльність кори головного мозку
- •8.6. Типи вищої нервової діяльності людини і тварин
- •Розділ 9 Фізіологічні основи вищої нервової (психічної) діяльності людини
- •9.1. Перша і друга сигнальні системи
- •9.2. Анатомо-фізіологічні основи мови
- •9.3. Фізіологія голосового апарату
- •9.4. Типи вищої нервової діяльності людини
- •9.5. Фізіологічні основи мислення
- •9.6. Свідомість як функція мозку
- •9.8. Функціональна асиметрія мозку людини
- •9.9. Фізіологія сну
- •9.10. Онтогенез кори та вищої нервової діяльності людини
- •9.11. Патологічні зміни вищої нервової діяльності людини
- •Розділ 10 Фізіологія аналізаторів
- •10.1. Зоровий аналізатор
- •10.2. Слуховий аналізатор
- •10.3. Вестибулярний аналізатор
- •10.4. Нюховий аналізатор
- •10.5. Смаковий аналізатор
- •10.6. Соматосенсорний аналізатор
- •Розділ 11 Автономна (вегетативна) нервова система
5.1.13. Робоча гіпертрофія м 'язів і атрофія від бездіяльності
Систематична інтенсивна діяльність м'язів веде до їх гіпертрофії, при якій збільшується маса саркоплазми, кількість міофібрил, підвищується вміст глікогену, АТФ і креатинфосфату. Внаслідок цього зростають сила і швидкість скорочення м'язів. У тренованих людей маса м'язів становить 50 % маси тіла, а в нетренованих - 35-40 %.
Від бездіяльності м'язи атрофуються. Такий стан може настати, коли кінцівка знерухомлена, бо знаходиться у гіпсовій пов'язці, коли перерізано сухожилля, коли хворий тривалий час нерухомо перебуває в ліжку. В ході атрофії зменшується діаметр м'язових волокон, кількість скоротливих білків у них, глікогену, АТФ й інших речовин.
Особливий вид атрофії виникає при денервації м'язів. Така атрофія не є результатом тільки бездіяльності м'язів, а й наслідком порушення трофічної функції нервової системи. Процеси обміну речовин у м'язі починають протікати безладно і не координовано. У денервованому м'язі різко зменшується активність багатьох ферментів, підвищується розпад білків, а м'язові волокна стають чутливими до ацетилхоліну і поза межами синапсів. Припускають, що в нормальних умовах нервові закінчення виділяють у спокої невеликі порції ацетилхоліну і інших речовин, які регулюють обмін речовин у м'язах.
5.1.14. Тонус м'язів
У спокої, без виконання рухів, м'язи не повністю розслаблені і зберігають деяке напруження, яке називають тонусом. Завдяки тонусу підтримуються положення тіла і поза в гравітаційному полі. Тонус м'язів зумовлений імпульсами невеликої частоти, які позмінно збуджують різні м'язові волокна. Ці імпульси виникають у мотонейронах спинного мозку, активність яких підтримується імпульсами як вищих нервових центрів, так і рецепторів розтягання (м'язових веретен), що знаходяться в м'язах. На рефлекторну природу тонусу вказує той факт, що перерізання задніх корінців (чутливих) спинного мозку супроводжується повним розслабленням м'язів. Людина може у певних межах довільно регулювати тонус: або майже розслабити м'язи, або трохи напружити їх. У здійсненні тонусу скелетних м'язів відіграють роль повільні м'язові волокна. М'язовий тонус характеризується незначними енерговитратами, тому він не супроводжується втомою.
5.2. Фізіологія гладеньких м'язів
Гладенькі м'язи людини і хребетних тварин входять до складу стінок шлунка, кишечника, сечоводів, сечового міхура, матки, бронхів, кровоносних судин й інших внутрішніх органів. Є вони і в шкірі (пиломотори), де гладком'язові клітини прикріплюються до волосяних сумок. Гладенькі м'язи спеціалізовані для виконання повільних рухів і тривалих тонічних скорочень. Скорочуючись, вони переміщують і виводять вміст порожнистих внутрішніх органів. Тривалі тонічні скорочення різко виражені у сфінктерах порожнистих органів, завдяки чому у них утримується їх вміст.
Побудовані гладенькі м'язи з дрібних одноядерних клітин веретеноподібної форми. Товщина клітин становить від 5 до 20 мкм, а довжина - 20-500 мкм. Зовні клітини вкриті плазматичною і базальною мембранами.
Клітини гладеньких м'язів зв'язані нексусами, десмосомами і відростками. Десмосоми беруть участь у механічному сполученні клітин. Зв'язок за допомогою відрцртків відіграє роль у передачі механічної взаємодії між клітинами. Нексуси є високопровідними контактами і забезпечують перехід збудження з од нієї клітини на іншу. Завдяки наявності нексусів гладенькі м'язи є функціональним, або електричним синцитієм.
Основними органоїдами гладком'язових клітин є ядро, мітохондрії, мікротрубочки, лізосоми, скоротливі нитки і саркоплазматичиий ретикулум (виражений слабо).
На відміну від посмугованих м'язів, які мають мезодермальне походження, гладенькі м'язи розвиваються з мезенхіми. Вони відрізняються від скелетних м'язів за біохімічними показниками: містять більше води, менше білків (у тому числі і скоротливих), креатинфосфату і АТФ, яка синтезується здебільшого у процесі гліколізу й окисного фосфорилювання. Витрати АТФ на скорочення менші, ніж у скелетних м'язах. Вміст актоміозину у гладеньких м'язах приблизно у 7 разів нижчий, ніж у скелетних. Міозин характеризується у 10 разів слабшою АТФ-азною активністю, ніж у скелетних м'язах. Міозин гладеньких м'язів відрізняється від міозину скелетних м'язів за амінокислотним складом, вищою розчинністю, чутливістю до ферментів і солей, а також імунологічно.
Тривалий час виявляли у гладком'язових клітинах тільки тонкі лротофібри-ли. Останнім часом виявили і міозинові протофібрили у клітинах майже всіх гладеньких м'язів, проте вони характеризуються високою лабільністю. Припускають, що актинові і міозинові протофібрили об'єднуються у міофібрили, які розташовуються під кутом до поздовжньої осі клітин і своїми кінцями прикріплюються до щільних тілець плазматичної мембрани.
У гладком'язових клітинах виявлено троиоміозин, який відрізняється від тропоміозину скелетних м'язів. Тропонін у гладеньких м'язах не знайдено.
Гладком'язові клітини мають мембранний потенціал спокою від -50 до -60 мВ, у його генерації беруть участь іони калію, натрію і хлору. Мембрана гладком'язових клітин у спокої більш проникна для натрію, ніж волокон скелетних м'язів, тому їх мембранний потенціал спокою менший.
Потенціали дії гладком'язових клітин мають форму або звичайних пікових потенціалів тривалістю 20-50 мс (м'язи матки, ворітної вени, кишечнику), або платоподібних потенціалів дії тривалістю до 1000 мс (м 'язи сечоводів, шлунка). Амплітуда потенціалів дії перевищує мембранний потенціал спокою на кілька мВ, тому овершут недостатньо виражений. Потенціали дії деяких м'язів закінчуються слідовою гіперполяризацією.
У м'язах, які характеризуються спонтанною активністю (шлунково-кишковий тракт, сечоводи, сечовий міхур, матка), потенціали дії розпочинаються препотенціалом, або генераторним потенціалом. Окрім того, у м'язах кишечника виявлено повільні хвилі деполяризації.
Гладенькі м'язи артеріол і артерій, сім'явиносних канальців, райдужної оболонки, мигальної перетинки не проявляють спонтанної активності та активуються нервовими імпульсами.
У гладеньких м'язах потенціали дії виникають за відсутності зовнішньо-клітинного натрію. Видалення ж кальцію із зовнішньоклітинного розчину веде до пригнічення генерації потенціалів дії. Такий же ефект спричиняють блокатори потенціалозалежних кальцієвих каналів (верапаміл, катіони лантану, марганцю і кадмію). Це вказує на те, що іони кальцію відіграють головну роль у генерації потенціалу дії.
Потенціали дії поширюються у гладеньких м'язах за рахунок колових струмів. Виникнувши в одній клітині, потенціал дії може поширюватися на інші клітини через контакти з низьким опором (нексуси). Поширюються потенціали дії тільки на певну відстань. Швидкість поширення потенціалів дії становить від 2-х до 10-ти см/с. Вона тим більша, чим довша клітина і чим меншу кількість міжклітинних контактів повинен пройти потенціал дії. Тому швидкість поширення потенціалів дії у напрямку поздовжньої осі клітин приблизно у 10 разів вища, ніж у поперечному напрямі.
Потенціали дії гладеньких м'язів відіграють роль у запуску скорочень. Зв'язок між збудженням і скороченням здійснюється за участю іонів кальцію. Оскільки саркоплазматичиий ретикулум недостатньо виражений, провідну роль у запуску скорочення відіграє зовнішньоклітинний кальцій, який надходить у клітини під час генерації потенціалів дії. Нез'ясованим залишається питання: яким чином кальцій активує скорочення, оскільки білок тропонін, чутливий до кальцію, не виявлено. Припускають, що АТФ-азна активність міозину підвищується внаслідок його фосфорилювання через систему кальцій-кальмодуліи-протеїнкіназа. Порогова концентрація кальцію в міоплазмі для активації скорочення перебуває на рівні 10-7 моль/л. Для розслаблення вона повинна бути знижена за рахунок виведення кальцію з клітин назовні роботою кальцієвої помпи і Nа-Са-обмінника, які функціонують у плазматичній мембрані. Припускають також, що частина кальцію депонується у ретикулумі і зв'язується білками поблизу внутрішньої поверхні плазматичної мембрани.
Гладенькі м'язи скорочуються дуже повільно. Латентний період досягає однієї секунди, тривалість поодинокого скорочення м'язів шлунка жаби - однієї хвилини. Внаслідок цього при дуже низькій частоті подразнення (10-12 імп./хв) гладенькі м'язи переходять у тривале скорочення, що нагадує тетанус скелетних м'язів.
Гладком'язові клітини скорочуються завдяки ковзанню тонких протофібрил відносно товстих. Унаслідок цього міофібрили вкорочуються і можуть розміщуватися перпендикулярно до поздовжньої осі клітини. Швидкість ковзання і розчеплення АТФ у 100-1000 разів менша, ніж у скелетних м'язах. Отже, як мембранні електричні процеси, так і скоротливий апарат пристосовані до здійснення повільних і тривалих скорочень без втоми і з незначними енерговитратами.
Гладенькі м'язи іннервуються симпатичною і парасимпатичною нервовими системами. їх медіатори модулюють спонтанну активність і спричиняють протилежні ефекти. Наприклад, ацетилхолін підсилює скорочення гладеньких м'язів кишечника, а норадреналін їх гальмує. Гладенькі м'язи чутливі до багатьох фізіологічно активних речовин (адреналін, гістамін, серотонін, брадикінін, простагландини). Ефект цих речовин у різних м'язах є неоднаковими. Якщо речовина спричиняє деполяризацію мембрани, виникає збудження і скорочення, а якщо - гіперполяризацію мембрани, то виникає гальмування і розслаблення. Чутливість гладком'язових клітин до фізіологічно активних речовин зумовлена наявністю в їх мембрані хеморецепторів, які зв'язані з хемочутливими іонними каналами.
Одним з адекватних подразників гладеньких м'язів є їх розтягання, яке веде до деполяризації мембрани, генерації потенціалів дії і скорочення. Ця властивість гладеньких м'язів має значення для здійснення нормальної фізіологічної діяльності багатьох внутрішніх органів.