Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ-2 тема ответы.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
161.58 Кб
Скачать

64. Определите понятия: детерминированный, недетерминированный, стохастический. К чему они относятся?

Детерминированность – от латинского определяемость. Детерминированность может подразумевать определяемость на общегносеологическом уровне или для конкретного алгоритма. Под детерминированностью процессов в мире понимается однозначная предопределённость. Является антонимом стохастичности.

Стохастичность (др.-греч. — цель, предположение) означает случайность. Стохастический процесс — это процесс, поведение которого не является детерминированным, и последующее состояние такой системы описывается как величинами, которые могут быть предсказаны, так и случайными. Однако, по М. Кацу[1] и Э. Нельсону[2], любое развитие процесса во времени (неважно, детерминированное или вероятностное) при анализе в терминах вероятностей будет стохастическим процессом (иными словами, все процессы, имеющие развитие во времени, с точки зрения теории вероятностей, стохастические).

Явления (ситуации) в которых результат полностью определяется влияющими на него факторами, называется детерминированными или закономерными, а те, в которых это не выполняется –недетерминированными или стохастическими (слово стохастический происходит от греческого слова, что в дословном переводе означает угадывать)

ТЕМА-2

65. Поясните как получают электрическую энергию на атомной электростанции

1)На электростанциях электрическую энергию получают благодаря использованию энергоносителей или преобразованию различных видов энергии.

В атомных электростанциях «топливом» служат радиоактивные элементы или их изотопы, выделяющие теплоту в процессе реакции распада. На атомных электростанциях в специальном устройстве, называемом атомным реактором, происходит процесс расщепления атомов урана, при котором выделяется большое количество теплоты. Получаемая при этом теплота превращает находящуюся в котлах воду в пар, приводящий во вращение роторы паровых турбин и соединенные с ними роторы генераторов, в которых механическая энергия турбин преобразуется в электрическую. Они работают на ядерном горючем, которое потребляется в незначительных количествах, поэтому его доставка на электростанцию не вызывает больших транспортных затрат.

2) Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища. Помимо воды, в различных реакторах в качестве теплоносителя могут применяться также расплавы металлов: натрий, свинец, эвтектический сплав свинца с висмутом и др. Использование жидкометаллических теплоносителей позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в жидкометаллическом контуре не превышает атмосферное), избавиться от компенсатора давления.

66. Исследования тепловых явлений и свойств макросистем позволяют проводить на основе двух качественно различных, но взаимно дополняющих методов: назовите и поясните.

Открытие закона сохранения энергии способствовало развитию двух качественно различных, но взаимно дополняющих методов исследования тепловых явлений и свойств макросистем:термодинамического и статистического (молекулярно-кинетического). Первый из них лежит в основе термодинамики, второй – молекулярной физики.

Термодинамический метод исследования заключается в том, что состояние термодинамической системы задается Термодинамическими параметрами(параметрами системы), характеризующими ее свойства. В качестве таковых обычно выбирают Абсолютную Температуру (температуру по шкале Кельвина – Т), Давление (Р), Молярный объем (объем одного моля вещества –VМ). Параметры связаны друг с другом, поэтому состояние системы можно представить в виде уравнения. Например, для идеального газа массой в один моль эту связь выражает уравнение Менделеева-Клапейрона: PVМ = RT

Термодинамический метод устанавливает связи между макроскопическими свойствами тел, рассматривая эти свойства как бы снаружи, не вникая в структуру вещества. Он изучает общие закономерности передачи и превращения энергии. он успешно применяется во всех отраслях естествознания (химии, биологии и др.). Однако, с другой стороны, термодинамический метод ограничен, так как не дает информации о механизме явлений.

Поведение громадного числа молекул, составляющих макротела, изучается также Статистическим Методом, который основан на том, что свойства макротел определяются свойствами молекул, особенностями их движения (скоростью, энергией, импульсом и т. д.) и взаимодействия. Например, температура может быть выражена через среднее значение кинетической энергии движения молекул. Статистический метод дает представление о механизме тепловых процессов, рассматривая их как бы изнутри макротел, он существенно дополняет термодинамический метод

ТЕМА-2

67. Поясните как получают электрическую энергию на гидроэлектростанции

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

68. В основе молекулярно-кинетических представлений о строении и свойствах макросистем лежат три основных положения: назовите и поясните.

В основе молекулярно-кинетической теории лежат три основных положения:

  1. Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

  2. Атомы и молекулы находятся в непрерывном хаотическом движении.

Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало

ТЕМА-2

69. Поясните как получают электрическую энергию на тепловой электростанции.

В тепловых электростанциях в топках котлов сжигается уголь, нефть или природный газ. Получаемая при этом теплота превращает находящуюся в котлах воду в пар, приводящий во вращение роторы паровых турбин и соединенные с ними роторы генераторов, в которых механическая энергия турбин преобразуется в электрическую

70. Что называют деформацией? Зависимость силы упругости от величины деформации выражается Законом Гука. Сформулируйте его.

Изменение размеров и формы тела под действием внешней силы называют деформацией. Сила упругости, возникающая при деформации, направлена в сторону, противоположную направлению смещения частиц тела, вызванного деформацией. При деформации соприкасающихся тел сила упругости перпендикулярна к поверхности соприкосновения. Деформация называется упругой, если после прекращения действия силы деформация полностью исчезает. Упругие тела – стальная пружина.

Зависимость силы упругости от величины деформации выражается Законом Гука, по имени английского ученого З. Гука (1635 -1703). Сила упругости , возникающая при упругой деформации, пропорциональна деформации тела:

,

где - радиус вектор частицы А тела относительно точки О;

к – жесткость упругого тела.