
- •1. Латинские прописные буквы:
- •2. Греческие буквы:
- •Раздел I. Металловедение и термическая обработка
- •Тема 1. Кристаллическое строение
- •1.1. Свойства материалов
- •1.2. Виды деформации
- •1.3. Механические свойства
- •1.4. Технологические свойства
- •Тема 2. Железоуглеродистые сплавы. Термическая и химико-термическая обработка стали
- •2.1. Сплавы
- •2.2. Термообработка
- •2.3. Химико-термическая обработка
- •Тема 3. Классификация, маркировка и применение металлов и сплавов
- •3.1. Основные примеси железоуглеродистых сплавов
- •3.2. Классификация сталей
- •3.3. Конструкционные углеродистые стали
- •3.4. Инструментальные углеродистые стали
- •Обозначение химических элементов в марках сталей
- •3.5. Конструкционные легированные стали
- •3.6. Инструментальные легированные стали
- •3.7. Стали и сплавы с особыми свойствами
- •3.8. Чугуны
- •3.9. Цветные металлы и сплавы
- •Раздел II. Литейное производство
- •Тема 4. Сущность литья. Литье в разовые песчано-глинистые формы (пгф)
- •4.1. Литье
- •4.2. Основные характеристики и требования к формовочным смесям
- •Стержневые смеси на основе песка
- •4.3. Формовка
- •Тема 5. Плавка чугуна и стали
- •5.1. Литейные свойства сплавов
- •5.2. Исходные материалы для плавки
- •5.3. Получение чугуна в доменной печи
- •5.4. Плавка стали
- •5.5. Новые способы производства (переплава) стали
- •Тема 6. Специальные способы литья
- •6.1. Литье в оболочковые формы
- •6.2. Литье по выплавляемым моделям
- •6.3. Литье в кокиль (постоянные металлические формы)
- •6.4. Центробежное литье
- •6.5. Литье под давлением
- •Раздел III. Обработка металлов давлением (омд)
- •Тема 7. Сущность обработки металлов давлением. Нагрев металла под омд
- •7.1. Холодная пластическая деформация
- •7.2. Горячая пластическая деформация
- •Тема 8. Получение машиностроительных профилей
- •8.1. Основные виды профилей
- •8.2. Прокатка
- •8.3. Волочение
- •8.4. Прессование
- •Тема 9. Кузнечно-прессовое производство
- •9.1. Исходные материалы
- •9.3. Свободная ковка ручная и машинная
- •9.4. Объемная холодная и горячая штамповка
- •9.5. Листовая штамповка
- •9.6. Ротационные способы изготовления поковок
- •Раздел IV. Сварочное производство
- •Тема 10. Сварка плавлением (термическая)
- •10.1. Электрическая дуговая сварка
- •10.2 Плазменная сварка
- •10.3 Особые виды электросварки
- •10. 4. Газовая сварка
- •Тема 11. Термомеханическая и механическая сварка
- •11.1. Свариваемость металлов и сплавов
- •11.2. Пайка
- •Раздел V. Механическая обработка заготовок
- •Тема 12. Сущность обработки металлов резанием,
- •12.1. Параметры режима резания
- •12.2. Обрабатываемость конструкционных материалов
- •12.3. Инструментальные материалы
- •12.4. Классификация металлорежущих станков
- •Тема 13. Технологические процессы механической
- •13.1. Основные технологические методы обработки заготовок
- •13.2. Строгание, долбление, протягивание
- •13.3. Обработка отверстий на сверлильных и расточных станках
- •13.4. Фрезерование
- •13.5. Шлифование
- •13.6. Методы отделки поверхностей
- •Раздел VI. Технология электроэрозионной обработки
- •Тема 14. Электрофизические и электрохимические
- •14.1. Электроэрозионные методы
- •14.2. Электрохимическая обработка
- •14.3. Анодно-механическая обработка
- •14.4. Химическая обработка
- •14.5. Ультразвуковая обработка
- •14.6. Лучевая обработка
- •Раздел VII. Изготовление деталей из
- •Тема 15. Изготовление деталей из порошковых
- •15.1. Металлокерамические заготовки и изделия
- •15.2. Композиционные материалы
- •15.3. Технология изготовления деталей
- •Тема 16. Полимерные композиционные материалы –
- •16.1. Пластмассы
- •16.2. Классификация полимеров и пластмасс
- •16.3. Типовые термопластичные материалы (термопласты)
- •16.4. Типовые термореактивные материалы (реактопласты)
- •16.5. Резиновые материалы
- •Тема 17. Изготовление деталей из пластмасс и резины
- •17.1. Переработка пластмасс в вязкотекучем состоянии
2.3. Химико-термическая обработка
Цель химико-термической обработки: получить поверхностный слой, обладающий особыми свойствами. Такими свойствами может быть высокая твердость, износостойкость, жаропрочность, окалино- или коррозионная стойкость. Нагретые детали подвергают воздействию среды, из которой путем диффузии поверхностный слой насыщается некоторыми элементами: углеродом, азотом, алюминием, хромом, кремнием и т. д. Диффузия лучше всего протекает, если в процессе химико-термической обработки элемент, которым производит-
ся насыщение поверхности, находится в атомарном состоянии. Процесс протекает в три стадии: диссоциация (распад молекул с образованием атомарного элемента) + адсорбция (взаимодействие с поверхностью и проникновение в кристаллическую решетку) + диффузия (проникновение в глубь металла). В результате диффузии активированный атом элемента проникает в кристаллическую решетку стали и образует твердый раствор или химическое соединение. Цементация – процесс насыщения поверхностного слоя деталей из малоуг-
леродистых сталей (С < 0,25 %) углеродом с целью получения путем последующей закалки твердой поверхности при сохранении вязкой сердцевины. Вещество, обеспечивающее насыщение поверхности углеродом, называется карбюризатором. Используются твёрдые, жидкие и газообразные карбюризаторы. Температура процесса при всех видах цементации t = 900 … 950 °С. Продолжительность зависит от требуемой толщины науглероживания и может изменяться в пределах от 2 до 7 часов. Толщина поверхностного слоя с содержанием углерода С = 0,8 … 1,1 % достигает 0,2 … 3 мм. Применяется для деталей, работающих одновременно на истирание и ударную или знакопеременную нагрузку. Цементация в твёрдом карбюризаторе, которым является древесный уголь, проводится в условиях ремонтного производства. Детали укладываются в металлические ящики и засыпаются древесным углём, в который для активизации обменных реакций, обеспечивающих атомарное состояние углерода, вводятся до 25 % BaCO3 или Na2 CO3. Газовая цементация производится в условиях серийного и массового производства. Карбюризатором являются природный и др. газы, содержащие углерод. Детали помещают в камеры с температурой 900 ... 930 °С, через которые пропускают газ:
CH4 → 2H2 + C (атомарный),
2CO → CO2 + C (атомарный).
Жидким карбюризатором являются расплавы смеси солей Na2 CO3 (75 %) и SiC (10 %), NaCl (15 %). Газовая цементация используется для мелких деталей с малой толщиной науглероживания 0,3…0,5 мм. После любого вида цементации делают закалку и низкий отпуск с t = 150 ...
170 °С, HСR = 60 ... 64.
Азотирование – процесс насыщения азотом с целью получения высокой твердости, износостойкости и коррозионной стойкости поверхностного слоя деталей. Азотируют легированные стали, содержащие Al, Ti, W, V, Mo или Cr, например: 35ХМЮА, 40XHMA, 18XГТ. Для азотирования используют герметические печи, в которые подают аммиак (t = 500 …600 °С). При разложении аммиака (2NH3 → 2N (атомарный) + 3H2) образуются нитриды (AlN, MoN, Fe4N). Время процесса τ = 24 ... 60 часов. Толщина слоя зависит от продолжительности процесса и составляет 0,25 ... 0,75 мм. HCR ≤ 70, твердость сохраняется до 400 ... 600
°С. Заметим, что после азотирования закалка не проводится. Закалка + высокий отпуск (улучшение) могут проводиться перед азотированием как предварительная термообработка для улучшения свойств внутренних объёмов детали. Преимущества азотирования по сравнению с цементацией: ниже температура, не требуется последующая закалка, твердость значительно выше. Кроме твёрдости увеличивается стойкость против коррозии и сопротивление усталости. Недостаток – большая длительность процесса. Широко применяется для
деталей из стали и чугуна. Имеются виды химико-термической обработки, в которых поверхность одновременно насыщается углеродом и азотом. К ним относится нитроцемента-
ция и цианирование. Нитроцементация – насыщение в газовой среде, содержащей аммиак и природный газ. Цианирование – насыщение в расплавленных цианистых солях при t = 820 и 950 °С. После нитроцементации и цианирования обязательно проводятся закалка и низкий отпуск.