Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Опорний конспект ВМ.doc
Скачиваний:
0
Добавлен:
10.02.2020
Размер:
4.56 Mб
Скачать

Розклад вектора за даним базисом

Нехай дана система n векторів . Потрібно перевірити, чи утворює дана система базис, і розкласти вектор за даним базисом.

1) Вектор подамо у вигляді лінійної комбінації векторів ; коефіцієнти лінійної комбінації являються координатами , який потрібно знайти, тому позначимо їх :

(1)

2) В рівності (1) замість запишемо стовпці їх координат.

3) Виконавши дії над одержаною рівністю у вигляді матриць, одержимо систему n рівнянь з n невідомими, яку розв’язуємо методом Жордана-Гаусса.

- Якщо система має 1 розв’язок, то утворюють базис і вектор єдиним способом може бути розкладений за цим базисом.

- Якщо система рівнянь має безліч розв’язків або несумісна, то вектори базис не утворюють.

Зауваження: Довільний n-вимірний векторний простір має базис, який утворює система одиничних n-вимірних векторів:

= (1; 0; 0;...0) = (0; 1; 0;...0)

= (0; 0; 1;...0) ... = (0; 0; 0;...1)

В тривимірному просторі такими були вектори .

Приклад: чи утворюють вектори базис і якщо утворюють , то розкласти за цим базисом:

= (1; 0; 1; 0) = (2; 1; -1; 2) = (-1; 1; 2; -1)

= (0; 1; 1; 1) = (2; 2; 2; 1)

Розкласти вектор за даним базисом –значить записати його як лінійну комбінацію базисних векторів.

?

~ ~

~ ~ ~

~ ~

Всі стовпці основної матриці базисні, значить система має 1 розв’язок, а значить вектор можна єдиним способом розкласти за даним базисом. Всі чотири вектори утворюють базис.

х1=1, х2=1 х3=1 х4=0

В новому базисі вектор має координати: =(1; 1; 1; 0).

Завдання додому.

1. Конспект; підготовка до практичного заняття.

2. [2] с. 70-76

Питання для самоконтролю

1. n-вимірні векторні простори.

2. Лінійна комбінація векторів.

3. Лінійно залежні та лінійно незалежні комбінації векторів.

4. Базисний мінор.

5. Базис.

6. Розклад вектора за даним базисом.

7. Ранг системи векторів

Л Е К Ц І Я 10

Тема: Пряма лінія на площині

Мета: ознайомити з різними видами рівнянь прямої на площині, кутом між двома прямими, відстанню від точки до прямої

Література: 1, с. 75-83; 6, с. 131-142].

П Л А Н

1. Різні види рівнянь прямої на площині.

2. Кут між двома прямими.

3. Відстань від точки до прямої.

1 . Точка на площині характеризується двома координатами: абсцисою та ординатою (М (х; у)). Рівняння прямої містять координати х та у у першому степені.

1) у Нехай дана пряма на площині.

М1 М11; у1) – фіксована точка прямої.

М (х; у) – довільна точка прямої (змінна)

М

0 х

Вектор = (m; n) паралельний прямій.

Потрібно за цими даними скласти рівняння прямої.

Вектори і колінеарні, значить їх координати пропорційні.

= (х-х1; у-у1)

Умова колінеарності:

Канонічне рівняння

прямої на площині

2) Перетворимо одержане рівняння прямої:

Відношення називають кутовим коефіцієнтом прямої =k

Рівняння прямої, яка проходить через т. М в

напрямі (напрям вказує k)

у

М1

0 х

- кут нахилу прямої до осі абсцис

k>0 – кут гострий, k<0 – тупий

3) Перетворимо одержане рівняння:

Рівняння прямої з кутовим коефіцієнтом

– ордината точки, в якій пряма перетинає вісь Оу

у

0 х

4) Рівняння прямої, яка проходить через дві задані точки.

у

М2 М11; у1)

М1 М22; у2)

0 х Запишемо рівняння прямої:

у-у1=к (х-х1)

у21=к (х21)

Так як М22; у2) лежить на прямій, то її координати задовольняють рівнянню прямої, тому замість х і у можна підставити координати т. М2 .

Розділимо обидві частини рівнянь і одержимо:

Рівняння прямої, яка проходить через дві задані точки

5) Загальне рівняння прямої

М1

М

=(А; В) прямій

позначимо С

Загальне рівняння прямої, де А і В – координати

нормального вектора прямої, С – вільний член