
- •6.030503 «Міжнародна економіка»,
- •6.030509 «Облік і аудит»,
- •6.030505 «Управління персоналом та економіка праці»
- •Мета: сформувати поняття визначника; ознайомити з визначниками 2-го та 3-го порядків, властивостями визначників, теоремою Лапласа, визначниками n-го порядку та їх обчисленням
- •2. Властивості визначників.
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 13-18; 6, с. 44-61].
- •Завдання додому
- •Питання для самоконтролю
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 24-25; 6, с. 72-74].
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 18-20; 6, с. 68-72].
- •Теорема Кронекера –Капеллі*
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 25-31; 6, с. 80-99].
- •Елементарні перетворення системи
- •Питання для самоконтролю
- •Література: 1, с. 32-39; 6, с. 102-107].
- •Приклад: Чи колінеарні вектори
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 50-55; 6, с. 109-116].
- •Система n-вимірних векторів
- •Розклад вектора за даним базисом
- •Завдання додому.
- •Питання для самоконтролю
- •Література: 1, с. 75-83; 6, с. 131-142].
- •Дослідження загального рівняння прямої
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 84-96; 6, с. 167-179].
- •Якщо прямі паралельні, то їх
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 148-164; 6, с. 205-218].
- •Нескінченно малі величини
- •Властивості нескінченно малих величин
- •Нескінченно великі величини.
- •Властивості нескінченно великих величин
- •Зв’язок між нескінченно великими і нескінченно малими величинами
- •Правило обчислення границі
- •Властивості границь
- •Односторонні границі
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 169-183; 6, с. 212-216].
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 191-222; 6, с. 237-260].
- •Економічний зміст похідної:
- •Геометричний зміст диференціала
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 246-266; 6, с.249-254].
- •Достатні умови монотонності функції.
- •Достатні умови існування екстремуму.
- •Необхідні умови існування точки перетину
- •Завдання додому.
- •Питання для самоконтролю
- •Література: 1, с. 284-300; 6, с. 276-307].
- •Способи задання функції:
- •Правила знаходження частинних похідних
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 310-318; 6, с.297-307].
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с.320-327; 6, с.313-326].
- •Необхідні умови існування екстремуму.
- •Достатні умови існування екстремуму
- •Питання для самоконтролю
- •Література: 1, с. 330-336; 6, с. 337-342].
- •Властивості невизначеного інтеграла
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 336-342; 6, с. 345-353].
- •1. Метод безпосереднього інтегрування.
- •Література: 1, с. 352-355; 6, с. 358-364].
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 365-385; 6, с. 392-400].
- •Формула Ньютона-Лейбніца
- •Завдання додому
- •Питання для самоконтролю
- •Завдання додому
- •Питання для самоконтролю
- •Питання для самоконтролю
- •Завдання додому
- •Питання для самоконтролю
- •1. Невласні інтеграли з нескінченними межами інтегрування (першого роду).
- •Література: 1, с. 412-420; 6, с. 408-415]. План
- •Питання для самоконтролю
- •Література: 1, с. 421-430; 6, с. 436-443].
- •Завдання додому.
- •Питання для самоконтролю
- •Література: 1, с. 427-438; 6, с. 438-443].
- •Завдання додому.
- •Питання для самоконтролю
- •Література: 1, с. 470-482; 6, с. 449-459].
- •Теорема (про структуру загального розв’язку лодр)
- •Формули для загального розв’язку лодр
- •Теорема (про структуру загального розв’язку лндр)
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 478-483; 6, с. 441-444].
- •Формула для загального рівняння:
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 493-497; 6, с. 464-473].
- •Властивості збіжних рядів
- •Завдання додому
- •Література: 1, с. 498-505; 6, с. 476-480].
- •Ознаки порівняння
- •Ознаки Коші
- •Ознака Лейбніца
- •Алгоритми перевірки на абсолютну збіжність.
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 512-527; 6, с. 492-504].
- •Теорема Абеля.
- •Метод знаходження інтервала збіжності степеневого ряду
- •Теорема (про достатні умови розкладання функції в ряд Тейлора)
- •Завдання додому
- •Питання для самоконтролю
- •Лекція 34
- •Література: 1, с. 538-564; 6., с. 508-510].
- •, Якщо – неперервна в точці ;
- •Література: 2, с. 450-472; 4, с. 385-396].
- •Питання для самоконтролю
- •Література: 2, с. 380-391; 4, с. 255-263].
- •1. Рахунки накопичення
- •2. Розрахунки ренти
- •Питання для самоконтролю
Геометричний зміст диференціала
Диференціал визначає приріст ординати дотичної, яка проведена в точці х0 до графіка функції у= f(x).
7. Інваріантність форми диференціала – незмінність: перший диференціал функції у= f(x) визначається за однією і тією самою формулою незалежно від того, чи змінна х є незалежною змінною, чи вона є функцією іншої змінної.
8. Диференціал функції застосовується в наближених обчисленнях.
Завдання додому
1. Конспект, підготовка до практичного заняття
[1] с. 191-222
[2] с. 176-194
2. Самостійна робота №8 “Задача про неперервне нарахування відсотків”
(2 год.) [2] с. 159-161
3. Самостійна робота №9 “Поняття про еластичність функції”
(2 год.) [2] с. 196-198
Питання для самоконтролю
1. Неперервність функції у=f (x).
2. Похідна функції. Геометричний та економічний зміст.
3. Основні правила диференціювання.
4. Таблиця похідних.
5. Похідна складної функції.
6. Означення диференціала та його зміст.
7. Інваріантність форми диференціала.
8. Застосування диференціала в наближених обчисленнях.
Л Е К Ц І Я 15
Тема: Дослідження функцій. Побудова графіків.
Мета: сформувати поняття екстремума функції, опуклості і вгнутості кривих, асимптоти кривої, ознайомити з схемою дослідження функції та побудовою графіка.
Література: 1, с. 246-266; 6, с.249-254].
П Л А Н
1. Екстремум функції.
2. Опуклість і вгнутість кривих.
3. Асимптоти кривої.
4. Схема дослідження функції та побудова графіка.
5 Видача індивідуального завдання.
1.
Границя відношення двох функцій (у
випадках невизначеності виду
і
при
або
)
дорівнює границі відношення похідних
цих функцій.
(або ) (або )
Правило Лопіталя використовується з застосуванням особливих границь і властивостей границь.
Приклад:
=
2.
Розглянемо функцію у= f
(x),
.
1 ) Функція називається зростаючою, якщо при х2 > х1 f (x2) > f (x1).
y
f (x1) f (x2)
0 x1 x2 x
2) Функція називається спадною, якщо при x1 > x2 f (x2) < f (x1).
y
f (x1)
f (x2)
0 x1 x2 x
Функція, яка або тільки зростає, або тільки спадає на деякому інтервалі, називається монотонною на цьому інтервалі.
Достатні умови монотонності функції.
1.
Якщо в кожній точці інтервалу
функція має додатню похідну, то в цьому
інтервалі функція зростає, тобто
нерівність
є достатньою умовою зростання функції.
2.
Якщо
,
то в інтервалі
функція спадає.
3.
Якщо
в кожній точці інтервалу
, то в цьому інтервалі функція постійна.
у
у=с
с
0 х
y
у=f (x) - гострий кут
0 x
3.
Розглянемо функцію у= f
(x),
х
.
х0 – точка max, якщо значення функції в цій точці є найбільшим в порівнянні із значенням функції в деякому околі точки х0 .
у
max
0 х1 х0 х2 х
х0 – називається точкою min, якщо значення функції в цій точці є найменшими в порівнянні із значенням функції в декому околі точки х0 .
у
min
0 х1 х0 х2 х
Необхідна умова існування екстремума (але не достатня).
Якщо в точці х0 існує екстремум, то в цій точці похідна дорівнює 0 або не існує.
Ці точки називаються критичними (або стаціонарними).
y Геометрично: дотична в точці
max екстремуму паралельна осі Ох .
min
0 x0 x1 x
Але критичні точки не обов’язково являються точками екстремума.