Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Опорний конспект ВМ.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
4.56 Mб
Скачать

Нескінченно малі величини

Нехай змінна величина* х в деякому процесі нескінченно зменшуючись наближається до 0 , тоді говорять, що х є нескінченно малою величиною.

* Величина, границя якої дорівнює 0

Означення. Змінна величина х називається нескінченно малою в процесі її зміни, якщо існує яке завгодно мале додатнє число , таке, що починаючи з деякого значення, всі наступні значення х задовольняють нерівність .

Тобто значення х попадає в - окіл нуля.

х х

0

Властивості нескінченно малих величин

1) Сума (різниця) нескінченно малих величин є величина нескінченно мала.

2) Добуток нескінченно малих величин є величина нескінченно мала.

3) Частка від ділення нескінченно малої величини на функцію, яка має відмінну від нуля границю, є величина нескінченно мала.

4) Добуток обмеженої функції на нескінченно малу є величина нескінченно мала.

5) -невизначеність.

Нескінченно великі величини.

Означення. Змінна величина х називається нескінченно великою в деякому процесі, якщо для довільного як завгодно великого додатнього числа М її модуль більший від М: .

Говорять, що змінна х прямує до нескінченності і пишуть

або lim =

Нескінченно великі величини можуть бути і від’ємними, і додатніми.

- нескінченно велика від’ємна величина

- нескінченно велика додатня величина

Властивості нескінченно великих величин

1)

2)

3) - невизначеність

4) - невизначеність

Зв’язок між нескінченно великими і нескінченно малими величинами

Величина, обернена нескінченно великій, є нескінченно мала

Величина, обернена нескінченно малій, є нескінченно велика

3. Нехай дана функція у=f (х). Число А називається границею функції f (х) при , якщо для всіх значень х, які як завгодно мало відрізняються від , відповідні значення у як завгодно мало відрізняються від А.

f(x)=А

у у= f(x) Означення

Число А називається границею

А функції у= f(x) при , якщо для

будь-якого наперед заданого скільки

А- завгодно малого числа >0

знайдеться таке число , що для

будь-якого х, відмінного від , при

0 х виконанні нерівності виконується нерівність .

Якщо значення х попадає в -окіл точки , то значення у попадає в

-окіл точки А.

Правило обчислення границі

f (x) = f (a), якщо f (a) існує.

Приклад: Знайти

Властивості границь

1) (f (x)+g (x)) = f (x) + g (x)

(якщо = f (x) і g (x) існують)

для всіх властивостей

2) (f (x) (x)) = f g (x)

3) , якщо g (x)

4) c = f (x), де с – const

5) С=С, де С –const

6) Для того, щоб число А було границею функції f (x) при , необхідно і достатньо, щоб різниця f (x) – А була нескінченно малою величиною, тобто

f (x) =A <=>

де - нескінченно мала величина;

Тобто функція мало відрізняється від своєї границі на

нескінченно малий доданок: при

Односторонні границі

1) Лівостороння границя

Границя функції при за умови, що х залишається меншим за , називається лівосторонньою.

х

2) Правостороння границя

х

Приклад:

Одна з ознак існування границі (про границю проміжної функції)

Нехай функції і Ф (х) при мають одну й ту ж границю:

F (x) = Ф (х) =А. Нехай функція f (x) задовольняє нерівність

F (x) f (x) Ф (х). Перейдемо до lim при :

F (x) f (x) Ф (х)

А f (x) A

f (x) =A