
- •6.030503 «Міжнародна економіка»,
- •6.030509 «Облік і аудит»,
- •6.030505 «Управління персоналом та економіка праці»
- •Мета: сформувати поняття визначника; ознайомити з визначниками 2-го та 3-го порядків, властивостями визначників, теоремою Лапласа, визначниками n-го порядку та їх обчисленням
- •2. Властивості визначників.
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 13-18; 6, с. 44-61].
- •Завдання додому
- •Питання для самоконтролю
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 24-25; 6, с. 72-74].
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 18-20; 6, с. 68-72].
- •Теорема Кронекера –Капеллі*
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 25-31; 6, с. 80-99].
- •Елементарні перетворення системи
- •Питання для самоконтролю
- •Література: 1, с. 32-39; 6, с. 102-107].
- •Приклад: Чи колінеарні вектори
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 50-55; 6, с. 109-116].
- •Система n-вимірних векторів
- •Розклад вектора за даним базисом
- •Завдання додому.
- •Питання для самоконтролю
- •Література: 1, с. 75-83; 6, с. 131-142].
- •Дослідження загального рівняння прямої
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 84-96; 6, с. 167-179].
- •Якщо прямі паралельні, то їх
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 148-164; 6, с. 205-218].
- •Нескінченно малі величини
- •Властивості нескінченно малих величин
- •Нескінченно великі величини.
- •Властивості нескінченно великих величин
- •Зв’язок між нескінченно великими і нескінченно малими величинами
- •Правило обчислення границі
- •Властивості границь
- •Односторонні границі
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 169-183; 6, с. 212-216].
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 191-222; 6, с. 237-260].
- •Економічний зміст похідної:
- •Геометричний зміст диференціала
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 246-266; 6, с.249-254].
- •Достатні умови монотонності функції.
- •Достатні умови існування екстремуму.
- •Необхідні умови існування точки перетину
- •Завдання додому.
- •Питання для самоконтролю
- •Література: 1, с. 284-300; 6, с. 276-307].
- •Способи задання функції:
- •Правила знаходження частинних похідних
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 310-318; 6, с.297-307].
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с.320-327; 6, с.313-326].
- •Необхідні умови існування екстремуму.
- •Достатні умови існування екстремуму
- •Питання для самоконтролю
- •Література: 1, с. 330-336; 6, с. 337-342].
- •Властивості невизначеного інтеграла
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 336-342; 6, с. 345-353].
- •1. Метод безпосереднього інтегрування.
- •Література: 1, с. 352-355; 6, с. 358-364].
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 365-385; 6, с. 392-400].
- •Формула Ньютона-Лейбніца
- •Завдання додому
- •Питання для самоконтролю
- •Завдання додому
- •Питання для самоконтролю
- •Питання для самоконтролю
- •Завдання додому
- •Питання для самоконтролю
- •1. Невласні інтеграли з нескінченними межами інтегрування (першого роду).
- •Література: 1, с. 412-420; 6, с. 408-415]. План
- •Питання для самоконтролю
- •Література: 1, с. 421-430; 6, с. 436-443].
- •Завдання додому.
- •Питання для самоконтролю
- •Література: 1, с. 427-438; 6, с. 438-443].
- •Завдання додому.
- •Питання для самоконтролю
- •Література: 1, с. 470-482; 6, с. 449-459].
- •Теорема (про структуру загального розв’язку лодр)
- •Формули для загального розв’язку лодр
- •Теорема (про структуру загального розв’язку лндр)
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 478-483; 6, с. 441-444].
- •Формула для загального рівняння:
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 493-497; 6, с. 464-473].
- •Властивості збіжних рядів
- •Завдання додому
- •Література: 1, с. 498-505; 6, с. 476-480].
- •Ознаки порівняння
- •Ознаки Коші
- •Ознака Лейбніца
- •Алгоритми перевірки на абсолютну збіжність.
- •Завдання додому
- •Питання для самоконтролю
- •Література: 1, с. 512-527; 6, с. 492-504].
- •Теорема Абеля.
- •Метод знаходження інтервала збіжності степеневого ряду
- •Теорема (про достатні умови розкладання функції в ряд Тейлора)
- •Завдання додому
- •Питання для самоконтролю
- •Лекція 34
- •Література: 1, с. 538-564; 6., с. 508-510].
- •, Якщо – неперервна в точці ;
- •Література: 2, с. 450-472; 4, с. 385-396].
- •Питання для самоконтролю
- •Література: 2, с. 380-391; 4, с. 255-263].
- •1. Рахунки накопичення
- •2. Розрахунки ренти
- •Питання для самоконтролю
Якщо прямі паралельні, то їх
напрямні вектори колінеарні
2
|
- умова паралельності прямих |
Перпендикулярні.
(1)
2
(2)
1
|
- умова перпендикулярності прямих |
3) Кут між двома прямими дорівнює куту між їхніми напрямними векторами 1 і 2 .
Взаємне розташування прямої та площини.
- пряма
- площина
1) Паралельні.
Аm+Bn+Cp=0
- умова паралельності
прямої і площини
2) Перпендикулярні. ||
-
умова
перпендикулярності
прямої і площини
Завдання додому
1. Конспект, підготовка до практичного заняття.
2. [1] с. 84-93
Питання для самоконтролю
1. Рівняння площини в R3 .
2. Взаємне розташування площин.
3. Рівняння прямої в R3 .
4. Взаємне розташування прямих, прямої та площини.
5 Аналітична геометрія в економіці.
Л Е К Ц І Я 12
Тема: Функція однієї змінної. Границя функції
Мета: сформувати поняття функції, розглянути способи її задання; ознайомити границею змінної величини, нескінченно малими і нескінченно великими величинами, зв’язком між ними, границею функції, односторонніми границями.
Література: 1, с. 148-164; 6, с. 205-218].
П Л А Н
1. Означення функції, способи її задання.
2. Границя змінної величини. Нескінченно малі і нескінченно великі величини, їх зв’язок.
3. Границя функції. Односторонні границі.
1. Якщо кожному елементу х з деякої множини Х за певним правилом ставиться у відповідність єдиний елемент у з множини У, то говорять, що у є функція від х і пишуть у=f (x).*
*Це означення належить М.І.Лобачевскому і Л.Діріхле.
х – незалежна змінна (або аргумент).
у – залежна змінна (або значення функції).
Множина Х називається областю визначення функції, множина У – область значень.
Способи задання функції.
1) Аналітичний (за допомогою формули).
при
2) Графічний (за допомогою графіка).
у
у=х2
0 х
3) Табличний
х |
-2 |
-1 |
0 |
1 |
2 |
у |
-8 |
-1 |
0 |
1 |
8 |
4) Словесний
Функція Діріхле: f (x)=1, якщо х – раціональне число; f (x)=0, якщо х – ірраціональне число.
2. Нехай
в деякому процесі змінна величина х
наближається до числа
,
тоді говорять, що х прямує до
і пишуть
.
Це значить, що починаючи з деякого
значення, х приймає як завгодно близькі
до числа
значення, але не рівні
. Тоді говорять, що число
є
границею змінної величини х, і пишуть
=
Означення
Число
називається границею змінної величини
х, якщо для довільного числа
>0,
починаючи з деякого значення, всі
наступні значення х задовольняють
нерівність
.
Тобто, починаючи з деякого значення, всі наступні значення х попадають
в - окіл точки і в процесі зміни залишаються в цьому околі.
0
х