Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГМОС ч.1 гл. 3к.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
158.72 Кб
Скачать

3.3. Сухоадиабатический градиент

Рассмотрим характер изменения температуры в адиабатически подни­мающейся частице сухого воздуха. Для этого воспользуемся

уравнением первого начала термодинамики:

(3.17)

и выразим изменение давления через уравнение статики атмосферы, учтя при этом, что р = рi = ре

dp = – g· (318)

Заменим в (3.18) через уравнение состояния сухого воздуха

в результате получим:

(3.19)

Подставим (3.19) в (3.17) и после сокращения запишем:

(3.20)

Разделим выражение (3.20) на выражение (cp · dz):

(3.21)

Полученное выражение (3.21) определяет изменение температуры воздушной частицы, отнесенное к единице высоты при адиабатическом процессе.

  • Данное выражение показывает, что при адиабатическом подъеме воздушной частицы температура ее всегда падает

Это связано с тем, что при подъеме воздушной частицы происходит расход внутренней энергии на работу расширения.

Сухоадиабатическим градиентом называется падение температуры при адиабатическом подъеме сухой воздушной частицы, отнесенное к единице высоты:

. (3.22)

Подставим (3.22) в (3.21) и получим:

(3.23)

Для реальной атмосферы 1. Следовательно, сухоадиабатический

градиент для реальной атмосферы – величина постоянная (const).

Она выражается:

(3.24)

и равна 0,98°/100м.

Приближенно можно считать, что температура адиабатически подни­мающейся воздушной частицы падает примерно на один градус при подъеме на каждые 100 м высоты.

Изменение с высотой температуры адиабатически поднимающейся воздушной частицы графически изображается в осях координат – температура – высота, в виде прямой линии. Она называется сухоадиабатой или кривой состояния сухой воздушной частицы.

3.4. Потенциальная температура

Потенциальной температурой ( ) называется температура, которую примет воздушная частица, если ее переместить сухоадиабатически с исходного уровня до уровня с давлением 1000 гПа.

Приближенное выражение для расчета потенциальной температуры имеет вид:

(3.25)

где р0 – давление воздуха на поверхности Земли;

Тi – температура воздуха на исходной поверхности;

z – расстояние перемещения частицы по вертикали.

В выражении (3.25) последнее слагаемое правой части представляет собой изменение температуры частицы при перемещении ее от поверхности Земли до уровня 1000 гПа.

Если давление воздуха у поверхности Земли менее 1000 гПа, то уровень 1000 гПа лежит ниже поверхности Земли. Поэтому при дополнительном перемещении частицы от поверхности земли до уровня 1000 гПа частица нагревается.

Потенциальная температура обладает важными свойствами.

  • При сухоадиабатическом перемещении частицы ее потенциальная температура сохраняет постоянное значение, хотя ее температура (как степень нагретости) изменяется.

Это свойство сохранения (консервативности) потенциальной темпера­туры используется в качестве характеристики воздушных масс и оценки их вертикальных перемещений.

  • Если при перемещении частицы ее потенциальная температура изменилась, то это свидетельствует о притоке, либо оттоке тепла.

Другим свойством потенциальной температуры является ее связь с пол­ной энергией воздушной частицы.

  • При адиабатическом перемещении частицы ее полная энергия не изменяется.