Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические Основы ТАУ Часть 3 (1).doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.55 Mб
Скачать

66

Московский государственный технический университет

им. Н. Э. Баумана

Пузанов в. П.

ЛЕКЦИИ

ПО КУРСУ «ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ»

ТЕОРИЯ ЦИФРОВЫХ СИСТЕМ АВТОМАТИЧЕСКОГО

УПРАВЛЕНИЯ И РЕГУЛИРОВАНИЯ.

Факультет «Специальное машиностроение»

Кафедра «Подводные роботы и аппараты»

2003 год.

Дискретные функции.

Дискретность сигналов в цифровых системах обусловлена их квантованием по уровню и по времени. В противоположность непрерывным сигналам, которые описываются непрерывными функциями времени, дискретные сигналы могут принимать лишь дискретные значения в дискретные моменты времени.

Мы будем рассматривать сигналы, дискретные во временной области. Они представляют собой последовательности импульсов, появляющиеся в определенные моменты времени. Обычно дискретный сигнал получается в результате периодического прерывания непрерывного сигнала с постоянным периодом (тактом).

В цифровых системах управления обычно применяется лишь амплитудная модуляция импульсов, причем в основном тот ее вариант, при котором высота импульса пропорциональна текущему значению непрерывного сигнала, ширина постоянна, а интервалы между импульсами одинаковы и равны такту квантования.

Рисунок иллюстрирует принцип получения последовательности импульсов, основанный на прохождении непрерывного сигнала через ключ, который периодически с тактом квантования , замыкается на время .

Если длительность импульса существенно меньше периода квантования , , или , то последовательность импульсов можно приближенно рассматривать как дискретный сигнал -дискретную функцию, вид которой показан на рисунке

В этом случае ключ действует как идеальный квантующий элемент, и величины равны мгновенным значениям сигнала (амплитуд).

Модулированная по амплитуде дискретная функция , которая получается путем квантования по времени непрерывного сигнала с постоянным тактом математически описывается выражением

,

Наряду с функциями, определенными на всей вещественной оси , можно рассматривать функции, которые определены только в некоторых точках Такие функции называются дискретными ( решетчатыми ).

Мы будем рассматривать функции, определенные только в равноотстоящих точках , где - любое целое число, - постоянная, называемая периодом дискретности. Дискретные функции принято обозначать .

Любой непрерывной функции можно поставить в соответствие некоторое множество решетчатых функций, если представить аргумент в виде

При каждом фиксированном значении переменной функцию можно рассматривать как решетчатую функцию, определенную в точках . Такие функции называются смещенными дискретными (решетчатыми) функциями. Эти функции будем обозначать . Изменяя переменную от 0 до 1, можно получить множество смещенных решетчатых функций , соответствующих данной непрерывной функции . Благодаря непрерывности функции , функция является непрерывной по аргументу .

Функция является функцией одного аргумента при фиксированном значении . Поэтому в дальнейшем постоянную в обозначении дискретной функции будем опускать и дискретную функцию будем обозначать как Аналогично для смещенной дискретной функции -функция двух переменных и .