- •1.0 Общие сведения о компьютерном моделировании
- •1.1 Основные этапы компьютерного моделирования
- •1.2 Виды моделей
- •1.3 Формализация объектов и процессов при построении модели
- •1.4 Требования, предъявляемые к моделям
- •1.5 Общий вид математических моделей
- •1.5.1 Общий вид математических моделей
- •1.5.2 Основные этапы формализации объектов и процессов при построении математической модели
- •1.5.3 Основные подходы в математическом моделировании
- •1.5.4 Основные допущения, используемые при создании математических моделей процессов омд
- •1.5.5 Методы решения задач омд
- •Контрольные вопросы
- •2 Реализация метода конечных элементов в современных программных продуктах
- •2.1 Особенности современных сапр программ, применяемых для моделирования процессов омд
- •2.2 Последовательность действий, выполняемая при моделировании в cae-системах, использующих мэк.
- •2.3 Создание геометрической модели и ее дискретизация.
- •2.3.1 Создание геометрической модели
- •2.3.1.1 Каркасное моделирование
- •2.3.1.2 Ограничения каркасных моделей
- •2.3.1.3 Поверхностное моделирование
- •2.3.1.4 Основные виды поверхностей, используемые при моделировании.
- •2.3.1.5 Твердотельное моделирование
- •2.3.1.6 Понятие гибридного моделирования
- •2.4 Задание типа кэ
- •2.5 Создание сетки кэ (ассамблирование).
- •2.6 Задание граничных условий
- •2.7 Решение контактных задач.
- •2.8 Задание свойств материала.
- •2.8.1 Модели, описывающие упругое поведение материала
- •2.8.2 Модели, описывающие пластическое состояние материала
- •2.8.3 Модели, используемые при моделировании с помощью эвм
- •2.9 Выбор параметров расчета и подготовка к расчету
- •2.10 Анализ полученных результатов
- •Заключение
- •443086 Самара, Московское шоссе, 34.
2.3.1.3 Поверхностное моделирование
Поверхностная модель определяется с помощью точек, линий и поверхностей, поэтому ее можно рассматривать как модель более высокого уровня.
Поверхностное моделирование дает следующие преимущества по сравнению с каркасным /15/:
- способность распознавать и изображать сложные криволинейные поверхности,
- способность распознавать грани и таким образом обеспечивать средство получения тоновых трехмерных изображений;
- способность распознавать особые построения на поверхностях, например, отверстия;
- возможность получения более качественного, чем при каркасном моделировании изображения.
Поскольку в ходе поверхностного моделирования мы имеем дело в основном с поверхностями, то ниже будут рассмотрены основные виды плоскостей и способы их получения.
2.3.1.4 Основные виды поверхностей, используемые при моделировании.
Применительно к поверхностному моделированию можно выделить следующие типы поверхностей /15/:
Кинематические поверхности. Это поверхности, которые можно получить, движением отрезка прямой в указанном направлении на заданную величину (рис. 16а) или по другому отрезку. Полученную в первом случае поверхность называют поверхностью выдавливания, а во втором - кинематической поверхностью. Заменив отрезок прямой на дугу, можно получить цилиндрическую поверхность (рис. 16б).
а)
б)
Рисунок 16 – Построение базовых геометрических поверхностей
Особенностью систем поверхностного моделирования является то, что они не распознают такие построения, как твердые объемные тела. Они представляют такие объекты, как поверхности, соединенные друг с другом в пространстве и ограничивающие "пустой" объем.
На рисунке 17 показана кинематическая поверхностная модель, которая на экране представлена виде объемного тела, в то время как в компьютерном представлении модель состоит из пяти поверхностей.
Рисунок 17 – Визуальное и компьютерное представление поверхностной модели
Поверхности вращения могут быть получены по команде, создающей поверхность вращением плоского контура вокруг определенной оси. При этом необходимо помнить, что создается не объемное тело, а генерируется только поверхность (рис. 18).
Поверхности сопряжений и пересечений. Такие поверхности получаются при создании плавных переходов в местах соединения двух различных по форме элементов. Возможность построения плавного сопряжения одной поверхности с другой является наиболее мощными часто используемым на практике средством поверхностного моделирования.
На рисунке 19 показаны поверхности сопряжения (внешняя и внутренняя) построенные на пересечении двух элементов детали (поверхность сопряжения - радиусный участок детали в переходе от основного участка трубы к ответвлению).
Рисунок 18 – Создание поверхности вращения
а)
б)
Рисунок 19– Поверхности сопряжения
Аналитические поверхности. Каждая такая поверхность определяется одним математическим уравнением с неизвестными X, Y, Z (эти неизвестные обозначают искомые координаты поверхности в координатном пространстве). Для изображения аналитической поверхности, необходимо знать математическое уравнение, которым оно описывается.
Скульптурные поверхности (поверхности "свободных форм" или "произвольные" поверхности) нельзя описать одним математическим уравнением. В большинстве случаев образы этих поверхностей создаются путем построения кривых продольных образующих между точками, определенными в трехмерном пространстве (рис. 20).
Рисунок 20 – Скульптурные поверхности
Несмотря на то, что методы поверхностного моделирования обладают многими достоинствами, существует ряд ограничений на их использование. К подобным ограничениям можно отнести:
- возникновение неоднозначности при попытке моделирования реального твердого тела;
- недостаточная точность представления некоторых поверхностных моделей для обеспечения надежных данных о трехмерных объемных телах;
- сложность процедур удаления скрытых линий и отображения внутренних областей.
