
Корни λ1, λ2 – действительны и разных знаков.
Преобразование от координат x,y к координатам ξ, η опять действительное. Уравнения для канонических переменных снова имеют вид (4.10), но теперь знаки λ1, λ2 различны. Уравнение фазовых траекторий имеет вид:
где
,
(4.14)
Интегрируя (4.14), находим
(4.15)
Это уравнение определяет семейство кривых гиперболического типа, где обе оси координат – асимптоты (при a=1 мы имели бы семейство равнобочных гипербол). Оси координат и в этом случае являются интегральными кривыми – это будут единственные интегральные кривые, проходящие через начало координат. Каждая из них состоит из трех фазовых траекторий: из двух движений к состоянию равновесия (или от состояния равновесия) и из состояния равновесия. Все остальные интегральные кривые – суть гиперболы, не проходящие через начало координат (рис. 4.6) Такая особая точка носит название «седло». Линии уровня вблизи горной седловины ведут себя подобно фазовым траекториям в окрестности седла.
-
Рис. 4.6. Особая точка типа седло на плоскости канонических координат ξ, η
Рассмотрим характер движения изображающей точки по фазовым траекториям вблизи состояния равновесия. Пусть, например, λ1>0, λ2<0. Тогда изображающая точка, помещенная на оси ξ, будет удаляться от начала координат, а помещенная на оси η – будет неограниченно приближаться к началу координат, не достигая его за конечное время. Где бы ни находилась изображающая точка в начальный момент (за исключением особой точки и точек на асимптоте η=0), она в конечном счете будет удаляться от состояния равновесия, даже если в начале она движется по одной из интегральных кривых по направлению к особой точке.
Очевидно, что особая точка типа седла всегда неустойчива. Только при специально выбранных начальных условиях на асимптоте η=0 система будет приближаться к состоянию равновесия. Однако это не противоречит утверждению о неустойчивости системы. Если считать, что все начальные состояния системы на фазовой плоскости равновероятны, то вероятность такого начального состояния, которое соответствует движению по направлению к особой точке, равна нулю. Поэтому всякое реальное движение будет удалять систему от состояния равновесия. Переходя обратно к координатам x,y, мы получим ту же качественную картину характера движения траекторий вокруг начала координат.
Пограничным между рассмотренными случаями узла и седла является случай, когда один из характеристических показателей, например λ1, обращается в нуль, что имеет место, когда определитель системы – выражение ad-bc=0 (см. формулу 4.8). В этом случае коэффициенты правых частей уравнений (4.4) пропорциональны друг другу:
и система имеет своими состояниями равновесия все точки прямой:
Остальные
интегральные кривые представляют собой
семейство параллельных прямых с угловым
коэффициентом
,
по которым изображающие точки либо
приближаются к состоянию равновесия,
либо удаляются от него в зависимости
от знака второго корня характеристического
уравнения λ2 = a+d.
(Рис.4.7) В этом случае координаты
состояния равновесия зависят от
начального значения переменных.
-
Рис. 4.7. Фазовый портрет системы, один из характеристических корней которой равен нулю, а второй отрицателен.