Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дом зад для биоф..docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
267.16 Кб
Скачать

Буферные растворы

Буферные растворы – сложные протолитические системы, способные сохранять примерное постоянство рН при добавлении в такую систему небольших количеств сильных кислот или щелочей. Буферные растворы широко распространены в химической и биохимической практике.

Все буферные системы содержат минимум два вещества, кроме воды. Эти вещества - сопряженная слабая кислота и соответствующее ей сопряженное основание - образуют в водном растворе протолитическую буферную систему.

Виды основных буферных водных растворов:

- слабая кислота и ее соль (СH3COOH- CH3COONa)

- слабое основание и его соль (NH3 – NH4Cl)

-средняя и кислая соль (Na2CO3 – NaHCO3)

- две кислых соли (NaH2PO4 – Na2HPO4)

- аминокислотные и белковые системы (гемоглобин - оксигемоглобин)

Компоненты буферной системы, представляющие собой сопряженную кислотно-основную пару, реагируют с водой, создавая буферные равновесия. В общем виде, если НА – слабая кислота, а А-- анион этой кислоты (т.е. анионное основание), то буферные равновесия запишутся в следующем виде:

НА +Н2О ↔ А- + Н3О+

А- + Н2О ↔ НА + ОН-.

Оба этих равновесия по принципу Ле Шателье сильно смещены влево, поэтому равновесные концентрации сопряженных кислоты и основания практически равны исходным концентрациям.

Так как буферная система образована одной и той же кислотно-основной парой, то из выражения для константы кислотности можно вывести уравнения для расчета рН в буферных растворах, которое называется уравнением Гендерсона-Хассельбальха:

a-)

pH = pKa + lg-----------

а(НА),

где а – активности соответствующих компонентов буферной системы.

Буферное действие

Механизм буферного действия заключается в том, что частицы сопряженного основания реагируют с ионом H3O+, образуя сопряженную слабую кислоту.

В общем виде: H3O+ + A- = H2O + HA

Например, в случае аммиачной буферной системы имеем: H3O++ NH3 = NH4+ + H2O

Ионы же OH- взаимодействуют с сопряженной кислотой, превращая ее в сопряженное слабое основание.

В общем случае: HA + OH- = H2O + A-

В случае той же аммиачной буферной системы: NH4+ + OH- = NH3 + H2O

Границы буферного действия

Границы буферного действия определяются, исходя из значения рК данной буферной системы и отличаются от него в обе стороны не более чем на единицу.

pH = pK ± 1

Буферная емкость

Буферная емкость является количественной характеристикой буферного раствора. Определяются буферная емкость по кислоте (Вк) и буферная емкость по щелочи (Вщ).

Буферная емкость определяется как количество вещества H3O + (или OH-) которое надо добавить к 1л данной буферной системы, чтобы его рН изменился на 1. Напомнить студентам, что при добавлении сильной кислоты к буферной системе рН немного уменьшается, а при добавлении щелочи немного увеличивается.

n(H3O+)добавл. n(ОH-)добавл.

Bк = ------------------- Вщ = -------------------

Vбуф.р-ра . |ΔpH| Vбуф.р-ра . |ΔpH|

Пример1. Рассмотреть буферные равновесия в буферной системе NH3- NH4Cl

Решение. Соль диссоциирует на ионы практически полностью:

NH4Cl = NH4+ + Cl -

Ион аммония является слабой катионной кислотой:

NH4 + + Н2О ↔ NH3 + Н3О+ (1)

Аммиак – нейтральное слабое основание, его протолиз записывается так:

NH3 + Н2О ↔ NH4 + + ОН- (2)

Уравнения (1) и (2) представляют собой уравнения буферных равновесий. По принципу Ле Шателье равновесие в обоих процессах сильно смещено влево . По этой причине равновесные концентрации аммиака и иона аммония практически равны их начальным концентрациям.

Расчет рН в буферных системах производится с помощью уравнения Гендерсона- Хассельбальха.

a(сопр.осн-я)

pH = pKa + lg-----------------

а(сопр. к-ты)

Аммиак – нейтральная молекула и для него коэффициент активности равен 1. Тогда для данной системы уравнение приобретает вид:

с0(NH3)

pH = pKa + lg-----------------

c0(NH4+) .f(NH4+)

Пример 2 а) Рассчитайте рН ацетатной буферной системы, приготовленной смешением 200мл 0,1м СН3СООН и 200мл 0,1М СН3СООNa. рКа(СН3СООН) = 4,76.

б) Рассчитайте рН данной буферной системы после добавления 10мл 1М HCl и буферную ёмкость по кислоте.

в) Рассчитайте рН данной буферной системы после добавления

10 мл1М NaOH и буферную ёмкость по щёлочи.

Решение:

а) рН ацетатной буферной системы равна: рН= 4,76 + lg с( CH3COO-) / c( CH3COOH)

Концентрации буферных кислоты и основания равны:

c(CH3COO-) = с(СH3COOH) = моль/л

Рассчитываем рН буферной системы:

pН = 4,76 + lg 0,05 / 0,05 = 4,76

б) При добавлении соляной кислоты протекает реакция:

CH3COO- + H3O+ = CH3COOH +H2O,

0,02 0,01 0,01 моль

В растворе было:n(CH3COO-) = 0,05·0,4 = 0,02 моль. Добавили n(HCl) = 0,01моль.

При этом сильная кислота заменяется в эквивалентных количествах на слабую (буферную) кислоту, а буферное основание в эквивалентных количествах уменьшается. (В этом заключается механизм буферного действия).

В результате реакции буферного основания осталось: 0,02 –0,01 = 0,01 моль,

а буферной кислоты стало: 0,02 + 0,01 = 0,03 моль.

Тогда рН = 4,76 + lg n( CH3COO-) / n(CH3COOH) = 4,76 + lg 0,01 / 0,03 = 4,28.

∆pH = 4,76 - 4,28 = 0, 48

Буферная ёмкость по кислоте равна: Bк = 0,01 / 0,41∙0,48 = 0,05моль/л.

в) При добавлении щёлочи в буферную систему протекает реакция:

CH3COOH + OH- = CH3COO- + H2O

0,02 0,01 0,01 моль

В растворе было: n(CH3COOH) = 0,05·0,4 = 0,02моль. Добавили n(NaOH) = 0,01моль.

При этом сильное основание ОН- заменяется в эквивалентных количествах на слабое(буферное основание), а буферная кислота в эквивалентных количествах уменьшается. В результате реакции буферной кислоты осталось: 0,02 –0,01 = 0,01 моль, а буферного основания стало:

0,02 + 0,01 = 0,03 моль.

Тогда рН = 4,76 + lg n(CH3COO-) / n(CH3COOH) = 4,76 + lg 0,03 / 0,01 = 5,24.

∆pH = 5,24 – 4,76 = 0,48.

Буферная ёмкость по щёлочи равна: Вщ =n(OH-) / V∙ ∆pH = 0,01 / 0,41∙0,48 = 0,05 моль/л.

Пример 3. Рассчитайте рН раствора, приготовленного смешением 300мл 0,05М KH2PO4 и 200мл 0,1М Na2HPO4. pKa(H2PO4 - /HPO42-)= 7,2.

Решение:

рН буферного раствора равно: рН = рКа + lg

Определяем ионную силу раствора.

KH2PO4 = K+ +H2PO4- Na2HPO4 = 2Na+ + HPO42-

0,05 0,05 0,05 ( моль) 0,1 0,2 0,1 (моль)

Объём буферного раствора: 300мл + 200мл = 500 мл =0,5л.

Концентрации ионов в буферном растворе равны:

)= моль/л c(Na )= = 0,08моль/л

c(H2PO4- )= = 0,03 моль/л c(HPO42-)= = 0.04 моль/л

Ионная сила J= 0,5 ( 0,03·12 + 0,03·12 + 0,08·12 + 0,04·22)= 0,15.

По таблице находим коэффициенты активности f ионов.

f(H2PO4-) =0,81. f( HPO42-) = 0,41.Рассчитываем рН данного буферного раствора:

pH= +lg = 7,03.

Пример 4. Какие объёмы 0,2М NH3·H2O и 0,1М NH4Cl необходимо взять для приготовления 200 мл буферного раствора с рН=9,54? pKb(NH3·H2O)=4,76.

Ионную силу раствора точно определить заранее нельзя, так как неизвестно количество и концентрация сильного электролита в полученном растворе. Однако можно создать требуемую ионную силу введением инертного электролита типа NaCl, Na2SO4. Для определенности примем ионную силу равную I = 0,1.

Решение:

Коэффициент активности нейтральных молекул можно принять равными 1. Коэффициент активности иона аммония при данном значении ионной силы равен 0,81.

pН данной буферной системы равно: рН = рКа(NH4+) + lg

pKa(NH4+) = 14 – pKb = 14 – 4,76 = 9,24. pH = 9,24 + lg

Предположим, что для приготовления буферного раствора взяли x (л) раствора аммиака. Тогда раствора хлорида аммония будет (0,2 – x)л.

c(NH3·H2O) = =x(моль/л) c(NH4+)= =(0,1-0,5x) моль/л.

Подставляем полученные данные в уравнение для рН буферной системы:

9,54 = 9,24 + lg lg

x= 0,0895 (л) =89,5 мл 90мл.

V(NH3·H2O) = 90мл V(NH4Cl) = 110мл

Решение:

Коэффициент активности нейтральных молекул можно принять равными 1,

а f(NH4+) = 0,81 в соответствии с ионной силой.

pН данной буферной системы равно: рН = рКа(NH4+) + lg

pKa(NH4+) = 14 – pKb = 14 – 4,76 = 9,24. pH = 9,24 + lg

Предположим, что для приготовления буферного раствора взяли x (л) раствора аммиака. Тогда раствора хлорида аммония будет (0,2 – x)л.

c(NH3·H2O) = =x(моль/л) c(NH4+)= =(0,1-0,5x) моль/л.

Подставляем полученные данные в уравнение для рН буферной системы:

9,54 = 9,24 + lg lg

x= 0,0895 (л) =89,5 мл 90мл.

V(NH3·H2O) = 90мл V(NH4Cl) = 110мл

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Рассчитайте рН буферного раствора, содержащего 0,01 моль CH3COOH и

0,02 моль CH3cOONa в 500 мл раствора.pKa(CH3COOH) = 4,75.

Какие реакции будут протекать при добавлении к этому раствору небольшого количества КОН или HNO3 ? Объясните механизм буферного действия.

2. Рассчитайте молярное соотношение основания и сопряженной кислоты в буферном растворе, содержащем СН3 СООН и СН3 COONa, рН которого равен 4,86 [Ка(СН3СООН) =1,76 • 10-5 ]. Какова буферная ёмкость это­го раствора по кислоте