- •Контактные сети и линии электропередачи
- •Глава 5 написана автором совместно с доцентом в.В. Свешниковым, глава 12 — с доцентом в.М. Павловым.
- •От автора
- •Глава 1 введение в контактные сети, линии электропередачи и их развитие
- •1.1. Понятие об энергетике и транспорте
- •1.2. Общие сведения об электрических сетях
- •1.3. Общие сведения о линиях электропередачи
- •1.4. Общие сведения о контактных сетях электрического транспорта
- •1.5. Этапы развития контактных сетей электрического транспорта
- •1.6. Контактные сети электрифицированных железных дорог
- •1.7. Понятия о характеристиках материалов, применяемых для изготовления узлов и элементов контактных сетей и линий электропередачи
- •Глава 2 климатические факторы и расчетные нагрузки, действующие на элементы контактных сетей и линий электропередачи
- •2.1. Общие положения
- •2.2. Нагрузка от веса провода
- •2.3. Гололед и гололедные нагрузки
- •2.4. Ветер и ветровые нагрузки
- •Нормативное скоростное давление и скорость ветра на высоте 10 м от земли (повторяемость 1 раз в 10 лет)
- •Параметры шероховатости подстилающей поверхности
- •2.5. Температура окружающей среды и ее расчетные значения
- •Годовые минимумы и максимумы температуры окружающей среды различной обеспеченности
- •Годовая температура повторяемостью 1 раз в 10 лет
- •2.6. Расчетные режимы и результирующие нагрузки
- •Глава 3 токопроводящие и контактные устройства контактных сетей и лэп
- •3.1. Общие положения
- •3.2. Контактные подвески и провода
- •Физико—механические характеристики проводов
- •Средняя разрушающая нагрузка (разрывное усилие в кН)
- •3.3. Узлы и элементы конструкций контактных подвесок и лэп
- •3.5. Расчет цепных контактных подвесок
- •3.6. Жесткие и полужесткие контактные токопроводы
- •3.7. Силовые кабели
- •Глава 4 опорно-подцерживающие устройства контактных сетей и лэп
- •4.1. Общие положения
- •4.2. Консоли, кронштейны и траверсы контактных сетей и лэп
- •4.3. Опоры контактных сетей и лэп
- •4.4. Жесткие поперечины
- •4.5. Гибкие поперечины
- •4.6. Основания и поддерживающие элементы опор
- •4.7. Расчет закрепления опорных конструкций в грунте
- •Характеристики грунтов
- •Глава 5 изолирующие элементы в контактных сетях и лэп
- •5.1. Основные параметры
- •5.2. Конструкция простых изоляторов
- •5.3. Конструкция сложных и комбинированных изоляторов
- •Глава 6 устройства секционирования контактной сети и лэп
- •6.1. Схемы секционирования контактных сетей станций и перегонов
- •6.2. Сопряжения контактных сетей и нейтральные вставки
- •6.3. Секционные изоляторы
- •6.4. Секционные разъединители и групповые переключатели контактных сетей и их приводы
- •Глава 7 защитные устройства контактных сетей и лэп
- •7.1. Защита изоляции от перенапряжений
- •7.2. Защита устройств контактных сетей от коррозии. Заземление, обеспечение электробезопасности
- •7.3. Обеспечение надежной работы защит. Минимизации потерь тягового тока и напряжения в рельсовой сети
- •7. 4. Репеллентная защита от перекрытия изоляции птицами
- •7 5 Защита проводов воздушных промежутков контактной сети от пережогов токоприемниками
- •Глава 8 встроенные диагностические устройства контактных сетей и лэп
- •Глава 9 расчеты усилий в опорах при обрыве проводов
- •Глава 10 тепловой расчет элементов контактных сетей и лэп
- •10.1. Распределение токов между проводами контактной сети
- •10.2. Расчет температуры провода для тока, не изменяющегося по времени
- •10.1. Кривые нагревания проводов при различных коэффициентах изменения сопротивления
- •10.3. Выбор расположения поперечных соединителей подвески
- •Глава 11
- •11.2. Ветроустойчивость устройств контактных сетей и лэп
- •11.3. Ветровые отклонения проводов и допустимые длины пролетов простых контактных подвесок и лэп
- •Ветровые отклонения проводов и допустимые длины пролетов цепных контактных подвесок
- •Глава 12 токоприемники
- •Общие сведения и определения
- •Приведенные массы системы подвижных рам и полозов токоприемников
- •Силы нажатий и сухого трения системы подвижных рам токоприемников
- •Силы нажатий кареток токоприемников
- •Аэродинамические устройства
- •Коэффициенты вязкого трения систем подвижных рам токоприемников
- •Глава 13
- •13.2. Критерии качества токосъема
- •13.3. Обобщенные расчетные схемы токоприемников и контактных подвесок
- •13.4. Сосредоточенные параметры контактных подвесок и их определение
- •13.5. Определение распределенных параметров контактных подвесок
- •13.6. Косвенные параметры контактных подвесок, взаимодействующих с токоприемниками
- •13.7. Расчет токосъема для токоприемников с двумя степенями свободы, с учетом контактных подвесок с сосредоточенными параметрами
- •13.8. Методы испытаний контактных подвесок в лабораторных условиях и на полигонах
- •13.9. Порядок динамического расчета компенсированных контактных подвесок скоростных и высокоскоростных магистралей
- •Глава 14
- •Контактных сетей
- •14.2 Требования к контактным материалам. Динамический коэффициент использования вставок.
- •14.3. Изнашивание при передаче электрической энергии через статический, разрывной и скользящий контакт «провод — токоприемник»
- •14.4. Общий и местный износ контактных проводов и вставок токоприемников
6.3. Секционные изоляторы
Секционные изоляторы предназначены для продольного секционирования, электрического разделения секций на контактных сетях постоянного и переменного тока, разделения фаз и создания нейтральных вставок и должны обеспечивать надежный и экономичный токосъем при проходе по ним токоприемников ЭПС.
Классифицируют секционные изоляторы (рис. 6.6) по уровню напряжения (роду тока), скорости движения поездов. По конструктивному исполнению они могут быть двух- и трехпроводными, а также малогабаритными. Последние могут быть замкнутые (3), полузамкнутые с изолирующими консольными скользунами (П) и разомкнутые (Р). В новой системе обозначений, принятой ЦЭ МПС РФ, после букв ИС (изолятор секционный) помещается значение уровня напряжения изолятора, затем буквы 3, П или Р. Изолирующий элемент обозначается вторыми и третьими буквами: полимерный гладкостержневой, не являющийся скользуном — ПГ; полимерный скользун — ПС; полимерный ребристый — ПР; фарфоровый — Ф. Последние цифры обозначают скорость движения ЭПС. Секционные изоляторы могут иметь или не иметь дугогасящие рога и подвешиваться к несущему тросу обычными, скользящими или упругими струнами. Пример записи условного обозначения: И-27,5-2РПГ-120 — изолятор секционный 27,5 кВ для разделения секций на станциях второй модели разомкнутого типа с полимерным гладкостержневым элементом, допускаемая скорость ЭПС — 120 км/ч. Продолжают использовать и старые обозначения, например, СИ-8-2 (на 3,3 кВ и 80 км/ч), СИ-9Н (с нейтральной вставкой на 27,5 кВ и 140 км/ч) Московский энергомеханический завод выпускает изоляторы, обозначаемые как ИС-2-80-3, ИС-1-80-25 и ИС-0-80-25/3 (последний на 80 км/ч и напряжения 25/3 кВ).
Рис. 6.6. Классификация основных типов секционных изоляторов контактных сетей
Секционные изоляторы непосредственно участвуют в процессе токосъема, поэтому их следует рассматривать как устройства подсистемы «Токопроводящие и контактные устройства» и рассчитывать на динамическое взаимодействие с токоприемниками. В расчетах учитываются концентрации приведенных масс и жесткостей контактных подвесок в пролетах, где они установлены. Это вызывает переходные процессы при токосъеме.
Технические требования определяют, что секционные изоляторы должны обеспечивать:
- надежную электрическую изоляцию между секциями контактной сети при любых атмосферных условиях и смешанной тяге;
- плавный проход полозов любого количества поднятых токоприемников с установленной на данном участке максимальной скоростью движения (без ударов, отрывов, снижения контактного нажатия ниже 40 Н и нарушений работы тяговых двигателей; с допустимым износом контактных пластин-вставок);
- эффективное гашение электрической дуги при заезде ЭПС с включенными двигателями на отключенный или заземленный участок либо нейтральную вставку, а также при большой разности потенциалов между секционируемыми участками контактной сети без повреждения дугой несущего троса;
- возможность применения простых по конструкции, но трекинго- и дугостойких изолирующих элементов или изолирующих скользунов;
- простоту изготовления изолятора, удобство его транспортирования и монтажа;
- срок службы не менее 10 лет, а изолирующих скользунов по износу их покрытия — не менее 5 лет.
Эффективность гашения электрической дуги секционными изоляторами во многом определяется конструкцией дугогасительных устройств. Воздушные зазоры в секционных изоляторах должны быть по возможности минимальными: 100—120 мм при напряжении 3 кВ; 140—160 мм при 15 кВ; 180—200 мм при 25 кВ. От размера воздушного зазора в устье дугогасительных рогов изоляторов зависит эффективность гашения дуги роговым разрядником: чем меньше этот зазор, тем эффективнее гасится электрическая дуга.
Разрушающая нормированная механическая сила при растяжении должна быть для изолирующих элементов и скользунов не менее 50 кН, изоляторов несущих тросов 70 кН. Выдерживаемое напряжение в сухом состоянии не менее 70 (145) кВ, под дождем — 65 (120) кВ для постоянного (переменного) тока.
Для секционных изоляторов с изолирующими скользунами и изолирующими элементами в России разработаны новые схемы дугогасительных устройств, в которых использованы одинарные и двойные роговые разрядники. Такими дугогасительными устройствами снабжены разработанные Ю.И. Горошковым секционные изоляторы ВНИИЖТ — 1, 2, 6, 9, 12.
В мировой практике конструирования секционных изоляторов имеется несколько направлений. В основном они различаются по типу применяемых в секционных изоляторах изолирующих элементов. Так, например, английская фирма ВIСС разрабатывает секционные изоляторы и нейтральные вставки только с изолирующими скользунами. Итальянская фирма Rebosio применяет в секционных изоляторах изолирующие элементы с ребристым чехлом из фторопласта, а французская фирма LERК — изолирующие элементы с ребристым чехлом из кремнийорганической резины. В Германии разработаны секционные изоляторы, в которых роль изолирующих элементов выполняют полимерные брусковые вставки из стеклопластика.
Идеальный секционный изолятор должен иметь непрерывные прямые или почти прямые линии скольжения полозов токоприемника по секционному изолятору; обеспечивать эффективное гашение электрической дуги и принудительное ее зажигание и горение только на дугогасительных устройствах; это изолятор, при монтаже которого максимально используются рабочие контактные провода и который рассчитан на применение в подвеске как с одним, так и с двумя контактными проводами; это ремонто- и контролепригодный изолятор, рассчитанный на длительный срок службы при минимальных трудозатратах на его техническое обслуживание.
Классификация секционных изоляторов показывает, что они имеют большее число разновидностей по сравнению с другими элементами контактной сети. Различными фирмами уже запатентовано более ста конструкций секционных изоляторов, каждая из которых характеризуется комплексом следующих параметров:
- номинальное напряжение в контактной сети и род тока;
- максимальная допускаемая скорость прохода токоприемника по секционному изолятору;
- наличие в секционном изоляторе дугогасительных устройств и их эффективность;
- конфигурация и расположение в плане относительно продольной оси секционного изолятора линий скольжения полозов токоприемников по изолятору;
- тип изолирующих элементов, их количество и расположение в горизонтальной плоскости относительно продольной оси изолятора;
- расположение изолирующих элементов в вертикальной плоскости по отношению к оси рабочего контактного провода;
- наличие вспомогательных изолированных консольных скользунов;
- наличие и количество изоляторов-распорок или изолирующих распорок, установленных поперек продольной оси изолятора между разнопотенциальными его элементами;
- наличие экрана в зоне дугогасительных устройств изолятора для защиты его изолирующих элементов от повреждения электрической дугой;
- возможность установки в контактную подвеску, расположенную на кривом участке пути с возвышением наружного рельса над внутренним на 40 мм и более;
- возможность использования рабочего контактного провода в качестве скользунов секционного изолятора;
- наличие жестких связей между секционным изолятором и несущим тросом контактной подвески;
- необходимость применения полимерных изолирующих струн или полимерных изоляторов в металлических струнах при монтаже изолятора;
- использование несущего троса контактной подвески для размещения элементов дугогасительного устройства изолятора;
- способ соединения секционного изолятора с рабочим контактным проводом.
Для основных типов секционных изоляторов РЖД (рис. 6.7) принята своя система обозначений частей изоляторов, врезаемых в контактные провода: длина — а, ширина — Ь, высота — С; воздушный зазор между разнопотенциальными частями — d, между дугогасительными рогами — е; величина перекрытия встречных скользунов — f; длина пути тока утечки — L.
Рис. 6.7. Секционные изоляторы: принципиальная схема (а) и их серийные конструкции для участков переменного тока: ИС-27,5/27,5 - ЗПС-200 (б); ИС-27,5 РПГМ-160 (в); ИС-27 5-ЗПС-160 (г); ИС-27,5/3,3-Ф-50 (д) и постоянного тока: ИС-3,3 - РПГ-140 (е); ИС-3,3 — РПГМ-120 (ж); ИС-3,3 — ЗПГМ-70 (з); ИС-3,3-2.3ПГ-70 (и)
