5. Равновесие газ-раствор
Растворимость газов в жидкостях зависит от ряда факторов: природы газа и жидкости, давления, температуры, концентрации растворенных в жидкости веществ (особенно сильно влияет на растворимость газов концентрация электролитов).
Наибольшее влияние на растворимость газов в жидкостях оказывает природа веществ. Так, в 1 литре воды при t = 18 °С и P = 1 атм. растворяется 0.017 л. азота, 748.8 л. аммиака или 427.8 л. хлороводорода. Аномально высокая растворимость газов в жидкостях обычно обусловливается их специфическим взаимодействием с растворителем – образованием химического соединения (для аммиака) или диссоциацией в растворе на ионы (для хлороводорода). Газы, молекулы которых неполярны, растворяются, как правило, лучше в неполярных жидкостях – и наоборот. Зависимость растворимости газов от давления выражается законом Генри – Дальтона:
Растворимость газа в жидкости прямо пропорциональна его давлению над жидкостью.
Здесь С – концентрация раствора газа в жидкости, k – коэффициент пропорциональности, зависящий от природы газа. Закон Генри – Дальтона справедлив только для разбавленных растворов при малых давлениях, когда газы можно считать идеальными. Газы, способные к специфическому взаимодействию с растворителем, данному закону не подчиняются.
Растворимость газов в жидкостях существенно зависит от температуры; количественно данная зависимость определяется уравнением Клапейрона – Клаузиуса (здесь X – мольная доля газа в растворе, λ – тепловой эффект растворения 1 моля газа в его насыщенном растворе):
Как правило, при растворении газа в жидкости выделяется теплота (λ < 0), поэтому с повышением температуры растворимость уменьшается. Растворимость газов в жидкости сильно зависит от концентрации других растворенных веществ. Зависимость растворимости газов от концентрации электролитов в жидкости выражается формулой Сеченова (X и Xo – растворимость газа в чистом растворителе и растворе электролита с концентрацией C):
6. Равновесие раствор-раствор
Закон распределения Нернста определяет относительное содержание в двух несмешивающихся или ограниченно смешивающихся жидкостях растворимого в них компонента; является одним из законов идеальных разбавленных растворов. Открыт в 1890 В. Нернстом.
Согласно закону распределения Нернста, при равновесии отношение концентраций третьего компонента в двух жидких фазах является постоянной величиной. Этогт закон может быть записан в виде
c1/c2 = k,
где c1 и c2 — равновесные молярные концентрации третьего компонента в первой и второй фазах; постоянная k — коэффициент распределения, зависящий от температуры.
С1
С2
n
моль
2n
моль
3n
моль
Рисунок 3.
Закон распределения Нернста позволяет определить более выгодные условия экстрагирования веществ из растворов.
7. Коллигативные свойства растворов
Коллигативные свойства растворов – это свойства, которые зависят от числа частиц растворенного в веществе и не зависят от его природы: 1. Понижение давления насыщенного пара (ДНП) над раствором
2. Понижение температуры замерзания раствора (ΔТз) и повышение температуры кипения раствора (ΔТк)
3. Осмотическое давление (π).
Понижение давления насыщенного пара (ДНП) над раствором. I закон Рауля
↑t ↑p0
H2O:
00C – 4,6 мм рт. ст.
200C – 17,4 мм рт. ст.
1000C – 760 мм рт. ст.
p0= pатм. жидкость закипает
p0
p
>
Рисунок
4
II закон Рауля
ΔТзамерзания = Тзамерзания р-ля – Тзамерзания р-ра = ΔТз
ΔТкипения = Ткипения р-ра – Ткипения р-ля = ΔТк
Повышение температуры кипения (ΔТк) и понижение температуры замерзания (ΔТз) разбавленных растворов неэлектролитов прямо пропорционально моляльной концентрации раствора.
ΔТк = Кэ·Сm; ΔТз = Кз·Сm
Ч
ем
больше концентрация растворенного
вещества, тем
выше Тк и ниже Тз раствора.
ΔТк = Кэ·Сm; ΔТз = Кз·Сm;
Сm – моляльная концентрация – количество растворенного вещества в 1 кг растворителя (моль/кг):
m вещ-ва
Cm = ————————
M · m раств-ля (кг)
Кэ – эбулиометрическая const;
Кз (КК) – криометрическая const;
Эти константы зависят от природы растворителя.
При Cm = 1 моль/кг; Кз = ΔТз; Кэ = ΔТк.
КзН2О = 1,86 кг·К/моль; КэН2О = 0,52 кг·К/моль;
Криометрия –метод определения молярной массы вещества (М) по температуре замерзания:
М в-ва = |
(Кз × mв-ва) |
(г/моль)
|
(ΔТз×mр-ля) |
