Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ЭМЛ.doc
Скачиваний:
10
Добавлен:
01.05.2025
Размер:
2.55 Mб
Скачать

Операция двоичного сложения. Многочлены Жегалкина

Представление полинома Жегалкина в каноническом виде. Представление булевой функции над базисом называется каноническим полиномом (многочленом) Жегалкина.

Алгебра называется алгеброй Жегалкина. Российский математик Жегалкин И.И. (1869-1947) предложил логическую связь, отраженную в таблице 15, называть суммой х и у и обозначать .

Таблица 15

х

у

0

0

1

0

1

0

1

0

0

1

1

1


В алгебре высказываний сумма истинна тогда и только тогда, когда истинно только одно составляющее сложного высказывания.

Можно также провести аналогию между операцией сложения по mod 2 и операцией двоичного сложения. Действительно, 0+0=0

0+1=1

1+0=1

1+1=(1)0, т.е. операция двоичного сложения в пределах последнего двоичного порядка имеет ту же последовательность символов, что и сумма по модулю два. Поэтому операция М2 имеет особое значение в схемах контроля и исправления ошибок. Если один из аргументов из-за неисправности в схеме исказится, то и значение функции изменится на противоположное.

Число полиномов Жегалкина от n переменных составляет , т.е. равно числу булевых функций от тех же переменных.

Теорема (Жегалкин И.И.) Всякая булева функция единственным образом представима в виде полинома Жегалкина.

Единственность понимается с точностью до порядка слагаемых в сумме и порядка сомножителей в конъюнкциях.

Представление полинома Жегалкина в каноническом виде выглядит следующим образом:

где - сложение по модулю два; знак (∙) обозначает конъюнкцию;

Канонический полином Жегалкина от двух переменных имеет вид:

от трех переменных:

Любой полином Жегалкина может быть приведен к каноническому виду.

Пример14. Привести многочлен Жегалкина к каноническому виду.

т.е.

Некоторые методы перехода от булевых функций к полиному Жегалкина

Указанная выше единственность представления булевой функции полиномом Жегалкина позволяет применять разнообразные методы построения соответствующих данной функции полиномиальных выражений, заботясь лишь о том, чтобы результирующий полином был приведенным, т.е. не содержал одинаковых сомножителей в конъюнкциях и одинаковых слагаемых. Ниже приводятся некоторые из них:

1. Метод, базирующийся на эквивалентном преобразовании формул заключается в следующем:

- представить функцию формулой над множеством связок и произвести эквивалентные преобразования, использую соотношения:

Здесь a, b, c обозначают как переменную, так и формулы.

Пример 15. Привести к полиному Жегалкина функцию

2. Достаточно часто используется метод неопределенных коэффициентов. Рассмотрим его на примере.

Пример 16. Пусть . Использую формулу полинома Жегалкина для двух переменных и придавая х, у возможные значения, выпишем систему уравнений для коэффициентов:

Следовательно, , т.е. мы получим тот же полином Жегалкина, что и в примере 15.

3. Переход от функции, представленной в виде СДНФ, к полиному Жегалкина.

При переходе от булевой функции, представленной в СДНФ, можно заменить знак на знак , а на , а затем привести полученное выражение к такому виду, чтобы в нем не было одинаковых сомножителей в конъюнкциях и одинаковых слагаемых.

Пример 17. Перейти от СДНФ булевой функции к полиному Жегалкина в каноническом виде.

1. Построим для таблицу истинности.

Таблица 16

х

у

0

0

1

1

0

1

1

1

1

0

0

1

1

1

0

0


2. Найдем СДНФ:

3. Заменив на , на и знак на знак получим:

Проверим правильность построения полинома Жегалкина по таблице истинности

Таблица 17

х

у

ху

1

0

0

0

1

1

0

1

0

1

1

1

0

0

1

1

1

1

1

1

0

Т.к. итоговые столбцы таблиц 16 и 17 совпадают, то преобразование произведено верно.

Приведем полученный полином Жегалкина к каноническому виду:

Имеются и другие методы перехода от булевой функции к полиному Жегалкина.

Используя любой из методов перехода можно представить каждую булеву функцию полиномом Жегалкина.

Ниже приведено представление булевых функций от двух переменных полиномами Жегалкина.

В справедливости вышеприведенных соотношений следует убедиться самостоятельно, используя различные методы перехода от булевой функции к полиному Жегалкина, а затем произвести проверку путем построения таблицы истинности для левой и правой части формул.