
- •Введение
- •Раздел 1. Формулы логики
- •Тема 1.1 Логические операции
- •Тема 1.2 Законы алгебры логики
- •Законы алгебры логики
- •Равносильные преобразования
- •Тема 1.3 Функции алгебры логики Функции алгебры логики
- •Специальные представления булевых функций
- •Минимизация нормальных форм
- •Операция двоичного сложения. Многочлены Жегалкина
- •Некоторые методы перехода от булевых функций к полиному Жегалкина
- •Раздел 2. Множества и отображения
- •Тема 2.1 Множества Основные понятия теории множеств
- •Операции над множествами
- •Диаграммы Эйлера-Венна
- •Законы теории множеств
- •Соотношение между множествами и составными высказываниями
- •Соотношение между высказываниями и соответствующими им множествами истинности
- •Тема 2.2 Отображения Бинарные отношения
- •Отображения и функции
- •Раздел 3. Предикаты Предикаты. Операции над предикатами
- •Кванторы
- •Раздел 4. Элементы теории алгоритмов Основные понятия теории алгоритмов
- •В настоящее время полученные на основе теории алгоритмов практические рекомендации получают всё большее распространение в области проектирования и разработки программных систем.
- •Литература
Содержание
ВВЕДЕНИЕ |
2 |
|
|
Раздел 1 Формулы логики |
4 |
|
|
1.1 Логические операции |
4 |
1.2 Законы алгебры логики |
9 |
1.3 Функции алгебры логики |
13 |
|
|
Раздел 2. Множества и отображения |
27 |
|
|
2.1 Множества |
27 |
2.2 Отображения |
38 |
|
|
Раздел 3.Предикаты |
53 |
|
|
Раздел 4. Элементы теории алгоритмов |
59 |
|
|
|
|
Литература |
63 |
Введение
М.В. Ломоносов говорил: ”Математику уже затем учить надо, что она ум в порядок приводит”.
В настоящее время никто не будет спорить с утверждением ,что во всякой науке ровно столько науки, сколько в ней математики.
Элементы математической логики относится к числу общепрофессиональных предметов, формирующих базовый уровень знаний, необходимых для изучения других дисциплин и междисциплинарных курсов, таких как “Архитектура ЭВМ, систем и сетей”, ”Базы данных”, ”Компьютерное моделирование”, ”Технология разработки программных продуктов”.
Цель изучения дискретной математики – сформировать, во-первых, понятийный аппарат, необходимый для самостоятельного изучения специальной математической литературы, во-вторых, профессионально - прикладную компетенцию будущих выпускников-специалистов. Курс позволит выработать у студентов систему умений и навыков самостоятельного избирательного восприятия информации и ее переработки. Его задачи научить систематизации, обобщению, структурированию знаний, а также их адекватному применению как в предметных областях, так и в практической деятельности.
Современную математику часто определяют как науку, работающую с готовыми моделями и создающую новые. В современном мире математика становится методом мышления. В результате изучения курса элементов математической логики студенты смогут понять, каким образом с помощью языка математики формируются новые понятия. Этому способствует введение элементов логики, изучение которой помогает установлению связей между различными и, на первый взгляд, далекими понятиями.
Высокая востребованность в элементах математической логики как самостоятельной, очень важной части математики, связана с появлением первых вычислительных машин.
Сегодня компьютер, телефон, кредитная карточка и многие другие блага цивилизации стали необъемлемой составляющей нашего быта.
Сегодня наиболее значимой областью применения методов и правил элементов математической логики является область компьютерных технологий. Это объясняется необходимостью создания и усовершенствования ЭВМ, средств обработки и передачи информации, а также представления различных моделей на компьютере. Вряд ли требуется объяснять полезность методов моделирования в управлении, строительстве, биологии, химии и любых других отраслях науки и народного хозяйства. Основа моделирования - элементы математической логики.
Если раньше компьютер осваивали только те, кто непосредственно его обслуживал: программисты, электронщики, операторы, то в XXI веке без машинной обработки информации не обойдется ни одна отрасль деятельности. Стимулом для развития многих разделов элементов математической логики явились запросы теоретической кибернетики, непосредственно связанной с развитием ЭВМ. Теоретическая кибернетика занимается изучением различных практических проблем средствами ЭМЛ; одна из наиболее значимых: связь релейной – контактных схем с формулами алгебры логики и их использование для описания функционирования автоматов, что стимулировало развитие математической логики и теории автоматов. Математическая логика в широком смысле изучает основания математики, принципы построения математических теорий.
Можно сказать, что ЭМЛ – сердцевина современной математической кибернетики. Формальные методы, применяемые в информатике, опираются на такие фундаментальные понятия ЭМЛ как логика, множества, отношения, функции и др.
Изучение курса на должном уровне поможет лучшему освоению специальных дисциплин.
Формальная логика существует уже более двух тысячелетий. Ее основателем считается Аристотель. Идеи о построении логики на математической основе были высказаны Лейбницем в начале XXVIII века.
Впервые идеи Лейбница реализовал Джордж Буль в 40-х годах XIX столетия. Он создал алгебру, в которой буквами обозначил высказывания, и это привело к возникновению алгебры высказываний. Применение математике в логике позволило представить логические теории в новой удобной форме.
Современная математическая логика – это раздел математики, посвященный изучению математических доказательств и вопросов основания математики.