
- •Раздел 1 элементы аналитической геометрии
- •Тема 1.1. Векторы
- •Действия над векторами
- •Свойства векторов
- •Координаты вектора
- •Действия над векторами, заданными своими координатами
- •Скалярное произведение векторов
- •Свойства скалярного произведения:
- •Скалярное произведение векторов в координатной форме
- •Тема 1.2. Прямая на плоскости Уравнение прямой на плоскости
- •Уравнение прямой по точке и нормальному вектору
- •Уравнение прямой по точке и направляющему вектору.
- •Уравнение прямой, проходящей через две точки
- •Уравнение прямой по точке и угловому коэффициенту
- •Уравнение прямой в отрезках
- •Параллельность прямых
- •Перпендикулярность прямых
- •Тема 1.3. Кривые второго порядка Уравнение второй степени с двумя переменными определяет на плоскости кривую второго порядка и притом единственную. Кривая второго порядка может быть задана уравнением
- •Окружность
- •Каноническое уравнение окружности с центром о(a; b) и радиусом r.
- •Гипербола
- •Парабола
- •Раздел 2 элементы линейной алгебры
- •Тема 2.1. Матрицы и определители
- •Виды матриц
- •Равенство матриц
- •Транспонированная матрица
- •Действия с матрицами
- •Свойства операции умножения матриц
- •Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера.
- •Определители
- •Свойства определителей
- •Миноры и алгебраические дополнения элементов определителя
- •Вычисление определителей п-го порядка
- •Способы вычисления определителей:
- •Обратная матрица
- •Свойства обратных матриц
- •Ранг матрицы
- •Вычисление ранга матрицы
- •Идея практического метода вычисления ранга матрицы
- •Тема 2.2. Системы линейных уравнений
- •Матричный метод решения систем линейных уравнений
- •Метод Крамера для решения систем линейных уравнений
- •Элементарные преобразования систем
- •Метод Гаусса
- •Раздел 3. Комплексные числа
- •Тема 3.1. Алгебраическая и геометрическая формы комплексного числа
- •Действия с комплексными числами в алгебраической форме
- •Геометрическая форма комплексного числа
- •Тема 3.2. Тригонометрическая и показательная формы комплексного числа Тригонометрическая форма комплексного числа
- •Действия с комплексными числами в тригонометрической форме
- •Показательная форма комплексного числа
- •Действия с комплексными числами в показательной форме
- •Раздел 4. Основы математического анализа
- •Тема 4.1 Теория пределов и непрерывность Числовые последовательности
- •Ограниченные и неограниченные последовательности
- •Монотонные последовательности
- •Число е
- •Предел функции в точке
- •Предел функции при стремлении аргумента к бесконечности
- •Основные теоремы о пределах
- •Бесконечно малые функции
- •Свойства бесконечно малых функций:
- •Бесконечно большие функции и их связь с бесконечно малыми
- •Типы неопределенностей и методы их раскрытия
- •Неопределенность вида .
- •Неопределенность вида .
- •Сравнение бесконечно малых функций
- •Свойства эквивалентных бесконечно малых
- •Замечательные пределы
- •Непрерывность функции в точке
- •Свойства непрерывных функций
- •Непрерывность некоторых элементарных функций
- •Точки разрыва и их классификация
- •Классификация точек разрыва
- •Непрерывность функции на интервале и на отрезке
- •Свойства функций, непрерывных на отрезке
- •Тема 4.2. Дифференциальное исчисление функции одной переменной Понятие производной функции
- •Геометрический и физический смысл производной
- •Производная сложной функции
- •Табличные значения производных основных функций
- •Дифференциал функции
- •Геометрический смысл дифференциала
- •Свойства дифференциала
- •Приближенные вычисления с помощью дифференциала
- •Производные и дифференциалы высших порядков
- •Основные теоремы дифференциального исчисления
- •Раскрытие неопределенностей Правило Лопиталя
- •Исследование функций с помощью производной Возрастание и убывание функции. Экстремумы
- •Выпуклость, вогнутость графика функции. Точки перегиба.
- •Асимптоты графика функции
- •Исследование функций и построение графиков
- •Тема 4.3. Дифференциальное исчисление функций нескольких переменных Понятие функции нескольких переменных
- •Непрерывность функции нескольких переменных
- •Свойства непрерывных функций
- •Производные и дифференциалы функций нескольких переменных
- •Полное приращение и полный дифференциал
- •Тема 4.4. Интегральное исчисление функции одной переменной Понятие неопределенного интеграла
- •Свойства неопределенного интеграла:
- •Методы интегрирования
- •1. Непосредственное интегрирование
- •2. Метод замены переменной (метод подстановки)
- •3. Интегрирование по частям
- •Интегрирование элементарных дробей
- •Интегрирование рациональных функций. Интегрирование рациональных дробей.
- •Интегрирование некоторых тригонометрических функций.
- •Интеграл вида если функция r является нечетной относительно cosx.
- •Свойства определенного интеграла
- •Вычисление объема тела вращения
- •Несобственные интегралы
- •Тема 4.5. Интегральное исчисление функций нескольких переменных Двойные интегралы
- •Условия существования двойного интеграла
- •Свойства двойного интеграла
- •Вычисление двойного интеграла
- •Геометрические приложения кратных интегралов
- •1) Вычисление площадей в декартовых координатах.
- •Тема 4.6. Дифференциальные уравнения
- •Свойства общего решения
- •Дифференциальные уравнения с разделяющимися переменными
- •Однородные уравнения
- •Линейные уравнения
- •Линейные однородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения
- •Метод Бернулли
- •Метод Лагранжа
- •Подставляем полученное соотношение в исходное уравнение
- •Дифференциальные уравнения высших порядков
- •Уравнения, допускающие понижение порядка
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Тема 4.7. Теория рядов Понятие числового ряда
- •Свойства рядов
- •Необходимые условия сходимости ряда
- •Ряды с неотрицательными членами
- •Признак сравнения рядов с неотрицательными членами
- •Признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакочередующиеся ряды
- •Признак Лейбница
- •Абсолютная и условная сходимость рядов
- •Признаки Даламбера и Коши для знакопеременных рядов
- •Функциональные последовательности
- •Функциональные ряды
- •Свойства равномерно сходящихся рядов
- •1) Теорема о непрерывности суммы ряда.
- •2) Теорема о почленном интегрировании ряда.
- •3) Теорема о почленном дифференцировании ряда.
- •Степенные ряды
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Разложение функций в степенные ряды
- •Формула Маклорена
- •Представление некоторых элементарных функций по формуле Тейлора.
Определители
Каждой квадратной матрице
может быть поставлено в соответствие
некоторое число, вычисляемое по
определенному правилу с помощью элементов
матрицы. Такое число называют определителем
(или детерминантом) матрицы
и обозначают символом
или
.
При этом порядком определителя
называют порядок соответствующей
матрицы.
Определитель
-го
порядка имеет вид:
.
Правила вычисления определителей 2-го и 3-го порядков легко выписать:
,
Последнюю
формулу, несмотря на внешнюю сложность
записи, нетрудно запомнить. Если соединить
линией каждые три элемента определителя,
произведение которых входит в правую
часть последней формулы со знаком «
»,
то получим легко запоминающуюся схему
1. Аналогично для произведений, входящих
со знаком «–», имеем схему 2.
Схема 1
Схема 2
Это правило вычисления определителей 3-го порядка называется правилом треугольников (или правилом Сарруса).
Свойства определителей
Свойство1 (равноправности строк и столбцов). Определитель не изменится, если его строки поменять местами с соответствующими столбцами (т.е. транспонировать):
det A = det AT;
Свойство 2. det ( A B) = det A det B.
Свойство 3. det (AB) = detAdetB
Свойство 4. Если в квадратной матрице поменять местами какие-либо две строки (или столбца), то определитель матрицы изменит знак, не изменившись по абсолютной величине.
Свойство 5. При умножении столбца (или строки) матрицы на число ее определитель умножается на это число.
Свойство 6. Определитель с двумя одинаковыми строками или столбцами равен нулю.
Свойство 7. Если матрица содержит нулевой столбец или нулевую строку, то ее определитель равен нулю. (Данное утверждение очевидно, т.к. считать определитель можно именно по нулевой строке или столбцу.)
Свойство 8. Определитель матрицы не изменится, если к элементам одной из его строк(столбца) прибавить(вычесть) элементы другой строки(столбца), умноженные на какое-либо число, не равное нулю.
Свойство 9. Треугольный определитель, у которого все элементы, лежащие выше (или ниже) главной диагонали, равны нулю, равен произведению элементов главной диагонали.
Миноры и алгебраические дополнения элементов определителя
Пусть дана матрица
-го
порядка.
Минором любого элемента
называют определитель порядка
,
соответствующий той матрице, которая
получается из матрицы
в результате вычеркивания
-й
строки и
-го
столбца (т.е. той строки и того столбца,
на пересечении которых стоит элемент
).
Минор элемента
будем обозначать символом
.
Алгебраическим дополнением
элемента
матрицы
называют минор
этого элемента, умноженный на
,
т.е.
.
Вычисление определителей п-го порядка
Теорема. Определитель матрицы
-го
порядка равен сумме произведений всех
элементов какой-нибудь одной фиксированной
строки на их алгебраические дополнения,
т.е. для любого
имеет место равенство
,
называемое разложением определителя по элементам -й строки.
Аналогично для
имеет место разложение определителя
по элементам k-го
столбца:
.