
- •Раздел 1 элементы аналитической геометрии
- •Тема 1.1. Векторы
- •Действия над векторами
- •Свойства векторов
- •Координаты вектора
- •Действия над векторами, заданными своими координатами
- •Скалярное произведение векторов
- •Свойства скалярного произведения:
- •Скалярное произведение векторов в координатной форме
- •Тема 1.2. Прямая на плоскости Уравнение прямой на плоскости
- •Уравнение прямой по точке и нормальному вектору
- •Уравнение прямой по точке и направляющему вектору.
- •Уравнение прямой, проходящей через две точки
- •Уравнение прямой по точке и угловому коэффициенту
- •Уравнение прямой в отрезках
- •Параллельность прямых
- •Перпендикулярность прямых
- •Тема 1.3. Кривые второго порядка Уравнение второй степени с двумя переменными определяет на плоскости кривую второго порядка и притом единственную. Кривая второго порядка может быть задана уравнением
- •Окружность
- •Каноническое уравнение окружности с центром о(a; b) и радиусом r.
- •Гипербола
- •Парабола
- •Раздел 2 элементы линейной алгебры
- •Тема 2.1. Матрицы и определители
- •Виды матриц
- •Равенство матриц
- •Транспонированная матрица
- •Действия с матрицами
- •Свойства операции умножения матриц
- •Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера.
- •Определители
- •Свойства определителей
- •Миноры и алгебраические дополнения элементов определителя
- •Вычисление определителей п-го порядка
- •Способы вычисления определителей:
- •Обратная матрица
- •Свойства обратных матриц
- •Ранг матрицы
- •Вычисление ранга матрицы
- •Идея практического метода вычисления ранга матрицы
- •Тема 2.2. Системы линейных уравнений
- •Матричный метод решения систем линейных уравнений
- •Метод Крамера для решения систем линейных уравнений
- •Элементарные преобразования систем
- •Метод Гаусса
- •Раздел 3. Комплексные числа
- •Тема 3.1. Алгебраическая и геометрическая формы комплексного числа
- •Действия с комплексными числами в алгебраической форме
- •Геометрическая форма комплексного числа
- •Тема 3.2. Тригонометрическая и показательная формы комплексного числа Тригонометрическая форма комплексного числа
- •Действия с комплексными числами в тригонометрической форме
- •Показательная форма комплексного числа
- •Действия с комплексными числами в показательной форме
- •Раздел 4. Основы математического анализа
- •Тема 4.1 Теория пределов и непрерывность Числовые последовательности
- •Ограниченные и неограниченные последовательности
- •Монотонные последовательности
- •Число е
- •Предел функции в точке
- •Предел функции при стремлении аргумента к бесконечности
- •Основные теоремы о пределах
- •Бесконечно малые функции
- •Свойства бесконечно малых функций:
- •Бесконечно большие функции и их связь с бесконечно малыми
- •Типы неопределенностей и методы их раскрытия
- •Неопределенность вида .
- •Неопределенность вида .
- •Сравнение бесконечно малых функций
- •Свойства эквивалентных бесконечно малых
- •Замечательные пределы
- •Непрерывность функции в точке
- •Свойства непрерывных функций
- •Непрерывность некоторых элементарных функций
- •Точки разрыва и их классификация
- •Классификация точек разрыва
- •Непрерывность функции на интервале и на отрезке
- •Свойства функций, непрерывных на отрезке
- •Тема 4.2. Дифференциальное исчисление функции одной переменной Понятие производной функции
- •Геометрический и физический смысл производной
- •Производная сложной функции
- •Табличные значения производных основных функций
- •Дифференциал функции
- •Геометрический смысл дифференциала
- •Свойства дифференциала
- •Приближенные вычисления с помощью дифференциала
- •Производные и дифференциалы высших порядков
- •Основные теоремы дифференциального исчисления
- •Раскрытие неопределенностей Правило Лопиталя
- •Исследование функций с помощью производной Возрастание и убывание функции. Экстремумы
- •Выпуклость, вогнутость графика функции. Точки перегиба.
- •Асимптоты графика функции
- •Исследование функций и построение графиков
- •Тема 4.3. Дифференциальное исчисление функций нескольких переменных Понятие функции нескольких переменных
- •Непрерывность функции нескольких переменных
- •Свойства непрерывных функций
- •Производные и дифференциалы функций нескольких переменных
- •Полное приращение и полный дифференциал
- •Тема 4.4. Интегральное исчисление функции одной переменной Понятие неопределенного интеграла
- •Свойства неопределенного интеграла:
- •Методы интегрирования
- •1. Непосредственное интегрирование
- •2. Метод замены переменной (метод подстановки)
- •3. Интегрирование по частям
- •Интегрирование элементарных дробей
- •Интегрирование рациональных функций. Интегрирование рациональных дробей.
- •Интегрирование некоторых тригонометрических функций.
- •Интеграл вида если функция r является нечетной относительно cosx.
- •Свойства определенного интеграла
- •Вычисление объема тела вращения
- •Несобственные интегралы
- •Тема 4.5. Интегральное исчисление функций нескольких переменных Двойные интегралы
- •Условия существования двойного интеграла
- •Свойства двойного интеграла
- •Вычисление двойного интеграла
- •Геометрические приложения кратных интегралов
- •1) Вычисление площадей в декартовых координатах.
- •Тема 4.6. Дифференциальные уравнения
- •Свойства общего решения
- •Дифференциальные уравнения с разделяющимися переменными
- •Однородные уравнения
- •Линейные уравнения
- •Линейные однородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения
- •Метод Бернулли
- •Метод Лагранжа
- •Подставляем полученное соотношение в исходное уравнение
- •Дифференциальные уравнения высших порядков
- •Уравнения, допускающие понижение порядка
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Тема 4.7. Теория рядов Понятие числового ряда
- •Свойства рядов
- •Необходимые условия сходимости ряда
- •Ряды с неотрицательными членами
- •Признак сравнения рядов с неотрицательными членами
- •Признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакочередующиеся ряды
- •Признак Лейбница
- •Абсолютная и условная сходимость рядов
- •Признаки Даламбера и Коши для знакопеременных рядов
- •Функциональные последовательности
- •Функциональные ряды
- •Свойства равномерно сходящихся рядов
- •1) Теорема о непрерывности суммы ряда.
- •2) Теорема о почленном интегрировании ряда.
- •3) Теорема о почленном дифференцировании ряда.
- •Степенные ряды
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Разложение функций в степенные ряды
- •Формула Маклорена
- •Представление некоторых элементарных функций по формуле Тейлора.
Дифференциальные уравнения с разделяющимися переменными
Дифференциальное уравнение первого порядка у′ = f(x, y) называется уравнением с разделяющимися переменными, если его можно представить в виде:
у′ = f1(x) ∙ f2(y).
При решении дифференциальных уравнений с разделяющимися переменными полезно придерживаться следующей схемы:
- разделить переменные (т.е. в одной части уравнения должно быть выражение, содержащее только переменную х, в другой – переменную у);
- найти интегралы от обеих частей уравнения, найти частное решение уравнения;
- найти частное решение, удовлетворяющее начальным условиям (если они заданы).
Пример. Найти общее решение дифференциального уравнения: ydy + xdx = 0
Сначала разделим переменные, т.е. запишем уравнение в виде
ydy = -xdx,
затем найдем интегралы от обеих частей уравнения:
∫ ydy = -∫xdx,
получим
Пример. Найти общее решение дифференциального уравнения: 2уу′ = 1-3х2.
Заменим у′
=
и умножим обе части уравнения на dx.
Получим: 2уdy = (1-3х2)dx,
Затем найдем интегралы от обеих частей:
2∫ уdy = ∫(1-3х2)dx,
у2 = х - х3+С.
Пример. Найти частное решение дифференциального уравнения (решить задачу Коши для заданных начальных условий): (1+x2)dy – 2x(y+3)dx = 0, если у = -1 при х = 0.
Сначала найдем общее решение. Разделим переменные (для этого выражение (– 2x(y+3)dx) перенесем в правую часть и разделим обе части уравнения на (1+x2)(y+3)).
Получим:
,
,
найдем интегралы от обеих частей:
Вычислим отдельно каждый интеграл.
1.
.
Введем новую переменную t
= у+3,
тогда dt
= (у+3)′∙
dу
= dу,
т.е. dt
= dу.
Подставим новую переменную в интеграл:
=
= ln
+C
= ln
+C
2.
.
Введем новую переменную t
= 1+x2
, тогда dt
= (1+x2)′∙
dx
= 2xdx,
откуда dx
=
.
Подставим новую переменную в интеграл:
=
=
=
ln
+C
=
ln
Найдем общее решение данного уравнения:
Для нахождения частного решения подставим
в общее решение вместо х и у заданные
начальные значения:
,
найдем С: С = ln 2,
подставим в общее решение получившееся значение C:
Пример. Найти общее решение
дифференциального уравнения:
-
это есть общий интеграл исходного дифференциального уравнения, т.к. искомая функция и не выражена через независимую переменную. В этом и заключается отличие общего (частного) интеграла от общего (частного) решения.
Пример.
Найти решение дифференциального
уравнения
при условии у(2)= 1.
при у(2) =
1 получаем
или
- частное решение;
Пример.
Решить уравнение
Пример.
Решить уравнение
при
условии у(1) = 0.
Если у(1) = 0, то
.
Пример.
Решить уравнение
.
Пример.
Решить уравнение
Преобразуем заданное уравнение:
Получили общий интеграл данного дифференциального уравнения. Если из этого соотношения выразить искомую функцию у, то получим общее решение.