
- •Раздел 1 элементы аналитической геометрии
- •Тема 1.1. Векторы
- •Действия над векторами
- •Свойства векторов
- •Координаты вектора
- •Действия над векторами, заданными своими координатами
- •Скалярное произведение векторов
- •Свойства скалярного произведения:
- •Скалярное произведение векторов в координатной форме
- •Тема 1.2. Прямая на плоскости Уравнение прямой на плоскости
- •Уравнение прямой по точке и нормальному вектору
- •Уравнение прямой по точке и направляющему вектору.
- •Уравнение прямой, проходящей через две точки
- •Уравнение прямой по точке и угловому коэффициенту
- •Уравнение прямой в отрезках
- •Параллельность прямых
- •Перпендикулярность прямых
- •Тема 1.3. Кривые второго порядка Уравнение второй степени с двумя переменными определяет на плоскости кривую второго порядка и притом единственную. Кривая второго порядка может быть задана уравнением
- •Окружность
- •Каноническое уравнение окружности с центром о(a; b) и радиусом r.
- •Гипербола
- •Парабола
- •Раздел 2 элементы линейной алгебры
- •Тема 2.1. Матрицы и определители
- •Виды матриц
- •Равенство матриц
- •Транспонированная матрица
- •Действия с матрицами
- •Свойства операции умножения матриц
- •Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера.
- •Определители
- •Свойства определителей
- •Миноры и алгебраические дополнения элементов определителя
- •Вычисление определителей п-го порядка
- •Способы вычисления определителей:
- •Обратная матрица
- •Свойства обратных матриц
- •Ранг матрицы
- •Вычисление ранга матрицы
- •Идея практического метода вычисления ранга матрицы
- •Тема 2.2. Системы линейных уравнений
- •Матричный метод решения систем линейных уравнений
- •Метод Крамера для решения систем линейных уравнений
- •Элементарные преобразования систем
- •Метод Гаусса
- •Раздел 3. Комплексные числа
- •Тема 3.1. Алгебраическая и геометрическая формы комплексного числа
- •Действия с комплексными числами в алгебраической форме
- •Геометрическая форма комплексного числа
- •Тема 3.2. Тригонометрическая и показательная формы комплексного числа Тригонометрическая форма комплексного числа
- •Действия с комплексными числами в тригонометрической форме
- •Показательная форма комплексного числа
- •Действия с комплексными числами в показательной форме
- •Раздел 4. Основы математического анализа
- •Тема 4.1 Теория пределов и непрерывность Числовые последовательности
- •Ограниченные и неограниченные последовательности
- •Монотонные последовательности
- •Число е
- •Предел функции в точке
- •Предел функции при стремлении аргумента к бесконечности
- •Основные теоремы о пределах
- •Бесконечно малые функции
- •Свойства бесконечно малых функций:
- •Бесконечно большие функции и их связь с бесконечно малыми
- •Типы неопределенностей и методы их раскрытия
- •Неопределенность вида .
- •Неопределенность вида .
- •Сравнение бесконечно малых функций
- •Свойства эквивалентных бесконечно малых
- •Замечательные пределы
- •Непрерывность функции в точке
- •Свойства непрерывных функций
- •Непрерывность некоторых элементарных функций
- •Точки разрыва и их классификация
- •Классификация точек разрыва
- •Непрерывность функции на интервале и на отрезке
- •Свойства функций, непрерывных на отрезке
- •Тема 4.2. Дифференциальное исчисление функции одной переменной Понятие производной функции
- •Геометрический и физический смысл производной
- •Производная сложной функции
- •Табличные значения производных основных функций
- •Дифференциал функции
- •Геометрический смысл дифференциала
- •Свойства дифференциала
- •Приближенные вычисления с помощью дифференциала
- •Производные и дифференциалы высших порядков
- •Основные теоремы дифференциального исчисления
- •Раскрытие неопределенностей Правило Лопиталя
- •Исследование функций с помощью производной Возрастание и убывание функции. Экстремумы
- •Выпуклость, вогнутость графика функции. Точки перегиба.
- •Асимптоты графика функции
- •Исследование функций и построение графиков
- •Тема 4.3. Дифференциальное исчисление функций нескольких переменных Понятие функции нескольких переменных
- •Непрерывность функции нескольких переменных
- •Свойства непрерывных функций
- •Производные и дифференциалы функций нескольких переменных
- •Полное приращение и полный дифференциал
- •Тема 4.4. Интегральное исчисление функции одной переменной Понятие неопределенного интеграла
- •Свойства неопределенного интеграла:
- •Методы интегрирования
- •1. Непосредственное интегрирование
- •2. Метод замены переменной (метод подстановки)
- •3. Интегрирование по частям
- •Интегрирование элементарных дробей
- •Интегрирование рациональных функций. Интегрирование рациональных дробей.
- •Интегрирование некоторых тригонометрических функций.
- •Интеграл вида если функция r является нечетной относительно cosx.
- •Свойства определенного интеграла
- •Вычисление объема тела вращения
- •Несобственные интегралы
- •Тема 4.5. Интегральное исчисление функций нескольких переменных Двойные интегралы
- •Условия существования двойного интеграла
- •Свойства двойного интеграла
- •Вычисление двойного интеграла
- •Геометрические приложения кратных интегралов
- •1) Вычисление площадей в декартовых координатах.
- •Тема 4.6. Дифференциальные уравнения
- •Свойства общего решения
- •Дифференциальные уравнения с разделяющимися переменными
- •Однородные уравнения
- •Линейные уравнения
- •Линейные однородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения
- •Метод Бернулли
- •Метод Лагранжа
- •Подставляем полученное соотношение в исходное уравнение
- •Дифференциальные уравнения высших порядков
- •Уравнения, допускающие понижение порядка
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Тема 4.7. Теория рядов Понятие числового ряда
- •Свойства рядов
- •Необходимые условия сходимости ряда
- •Ряды с неотрицательными членами
- •Признак сравнения рядов с неотрицательными членами
- •Признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакочередующиеся ряды
- •Признак Лейбница
- •Абсолютная и условная сходимость рядов
- •Признаки Даламбера и Коши для знакопеременных рядов
- •Функциональные последовательности
- •Функциональные ряды
- •Свойства равномерно сходящихся рядов
- •1) Теорема о непрерывности суммы ряда.
- •2) Теорема о почленном интегрировании ряда.
- •3) Теорема о почленном дифференцировании ряда.
- •Степенные ряды
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Разложение функций в степенные ряды
- •Формула Маклорена
- •Представление некоторых элементарных функций по формуле Тейлора.
Тема 4.5. Интегральное исчисление функций нескольких переменных Двойные интегралы
Рассмотрим на плоскости некоторую замкнутую кривую, уравнение которой f(x, y) = 0.
y
0 x
Совокупность всех точек, лежащих внутри кривой и на самой кривой назовем замкнутой областью . Если выбрать точки области без учета точек, лежащих на кривой, область будет называется незамкнутой область .
С геометрической точки зрения - площадь фигуры, ограниченной контуром.
Разобьем область на n частичных областей сеткой прямых, отстоящих друг от друга по оси х на расстояние хi, а по оси у – на уi. Вообще говоря, такой порядок разбиения необязателен, возможно разбиение области на частичные участки произвольной формы и размера.
Получаем, что площадь S делится на элементарные прямоугольники, площади которых равны Si = xi yi .
В каждой частичной области возьмем произвольную точку Р(хi, yi) и составим интегральную сумму
где f – функция непрерывная и однозначная для всех точек области .
Если бесконечно увеличивать количество частичных областей i, тогда, очевидно, площадь каждого частичного участка Si стремится к нулю.
Если
при стремлении к нулю шага разбиения
области интегральные
суммы
имеют конечный предел, то этот предел
называется двойным интегралом
от функции f(x,
y) по области .
С учетом того, что Si = xi yi получаем:
В приведенной выше записи имеются два знака , т.к. суммирование производится по двум переменным х и у.
Т.к. деление области интегрирования произвольно, также произволен и выбор точек Рi, то, считая все площади Si одинаковыми, получаем формулу:
Условия существования двойного интеграла
Сформулируем достаточные условия существования двойного интеграла.
Теорема.
Если функция f(x,
y) непрерывна в
замкнутой области ,
то двойной интеграл
существует.
Теорема. Если функция f(x, y) ограничена в замкнутой области и непрерывна в ней всюду, кроме конечного числа кусочно – гладких линий, то двойной интеграл существует.
Свойства двойного интеграла
1)
2)
3) Если = 1 + 2, то
4) Теорема о среднем. Двойной интеграл от функции f(x, y) равен произведению значения этой функции в некоторой точке области интегрирования на площадь области интегрирования.
5) Если
f(x, y)
0 в
области , то
.
6) Если
f1(x,
y)
f2(x,
y), то
.
7)
.
Вычисление двойного интеграла
Теорема. Если функция f(x, y) непрерывна в замкнутой области , ограниченной линиями х = a, x = b, (a < b), y = (x), y = (x), где и - непрерывные функции и , тогда
y y
= (x)
y = (x)
a
b
x
Пример.
Вычислить интеграл
,
если область
ограничена линиями: y
= 0, y = x2,
x = 2.
y
4
0 2 x
=
Теорема. Если функция f(x, y) непрерывна в замкнутой области , ограниченной линиями y = c, y = d (c < d), x = (y), x = (y) ((y) (y)), то
Пример.
Вычислить интеграл
,
если область
ограничена линиями
y = x, x = 0, y = 1, y = 2.
y
y = x
2
1
0 x
Пример.
Вычислить интеграл
,
если область интегрирования
ограничена линиями х = 0, х = у2,
у = 2.
=
=