
- •Раздел 1 элементы аналитической геометрии
- •Тема 1.1. Векторы
- •Действия над векторами
- •Свойства векторов
- •Координаты вектора
- •Действия над векторами, заданными своими координатами
- •Скалярное произведение векторов
- •Свойства скалярного произведения:
- •Скалярное произведение векторов в координатной форме
- •Тема 1.2. Прямая на плоскости Уравнение прямой на плоскости
- •Уравнение прямой по точке и нормальному вектору
- •Уравнение прямой по точке и направляющему вектору.
- •Уравнение прямой, проходящей через две точки
- •Уравнение прямой по точке и угловому коэффициенту
- •Уравнение прямой в отрезках
- •Параллельность прямых
- •Перпендикулярность прямых
- •Тема 1.3. Кривые второго порядка Уравнение второй степени с двумя переменными определяет на плоскости кривую второго порядка и притом единственную. Кривая второго порядка может быть задана уравнением
- •Окружность
- •Каноническое уравнение окружности с центром о(a; b) и радиусом r.
- •Гипербола
- •Парабола
- •Раздел 2 элементы линейной алгебры
- •Тема 2.1. Матрицы и определители
- •Виды матриц
- •Равенство матриц
- •Транспонированная матрица
- •Действия с матрицами
- •Свойства операции умножения матриц
- •Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера.
- •Определители
- •Свойства определителей
- •Миноры и алгебраические дополнения элементов определителя
- •Вычисление определителей п-го порядка
- •Способы вычисления определителей:
- •Обратная матрица
- •Свойства обратных матриц
- •Ранг матрицы
- •Вычисление ранга матрицы
- •Идея практического метода вычисления ранга матрицы
- •Тема 2.2. Системы линейных уравнений
- •Матричный метод решения систем линейных уравнений
- •Метод Крамера для решения систем линейных уравнений
- •Элементарные преобразования систем
- •Метод Гаусса
- •Раздел 3. Комплексные числа
- •Тема 3.1. Алгебраическая и геометрическая формы комплексного числа
- •Действия с комплексными числами в алгебраической форме
- •Геометрическая форма комплексного числа
- •Тема 3.2. Тригонометрическая и показательная формы комплексного числа Тригонометрическая форма комплексного числа
- •Действия с комплексными числами в тригонометрической форме
- •Показательная форма комплексного числа
- •Действия с комплексными числами в показательной форме
- •Раздел 4. Основы математического анализа
- •Тема 4.1 Теория пределов и непрерывность Числовые последовательности
- •Ограниченные и неограниченные последовательности
- •Монотонные последовательности
- •Число е
- •Предел функции в точке
- •Предел функции при стремлении аргумента к бесконечности
- •Основные теоремы о пределах
- •Бесконечно малые функции
- •Свойства бесконечно малых функций:
- •Бесконечно большие функции и их связь с бесконечно малыми
- •Типы неопределенностей и методы их раскрытия
- •Неопределенность вида .
- •Неопределенность вида .
- •Сравнение бесконечно малых функций
- •Свойства эквивалентных бесконечно малых
- •Замечательные пределы
- •Непрерывность функции в точке
- •Свойства непрерывных функций
- •Непрерывность некоторых элементарных функций
- •Точки разрыва и их классификация
- •Классификация точек разрыва
- •Непрерывность функции на интервале и на отрезке
- •Свойства функций, непрерывных на отрезке
- •Тема 4.2. Дифференциальное исчисление функции одной переменной Понятие производной функции
- •Геометрический и физический смысл производной
- •Производная сложной функции
- •Табличные значения производных основных функций
- •Дифференциал функции
- •Геометрический смысл дифференциала
- •Свойства дифференциала
- •Приближенные вычисления с помощью дифференциала
- •Производные и дифференциалы высших порядков
- •Основные теоремы дифференциального исчисления
- •Раскрытие неопределенностей Правило Лопиталя
- •Исследование функций с помощью производной Возрастание и убывание функции. Экстремумы
- •Выпуклость, вогнутость графика функции. Точки перегиба.
- •Асимптоты графика функции
- •Исследование функций и построение графиков
- •Тема 4.3. Дифференциальное исчисление функций нескольких переменных Понятие функции нескольких переменных
- •Непрерывность функции нескольких переменных
- •Свойства непрерывных функций
- •Производные и дифференциалы функций нескольких переменных
- •Полное приращение и полный дифференциал
- •Тема 4.4. Интегральное исчисление функции одной переменной Понятие неопределенного интеграла
- •Свойства неопределенного интеграла:
- •Методы интегрирования
- •1. Непосредственное интегрирование
- •2. Метод замены переменной (метод подстановки)
- •3. Интегрирование по частям
- •Интегрирование элементарных дробей
- •Интегрирование рациональных функций. Интегрирование рациональных дробей.
- •Интегрирование некоторых тригонометрических функций.
- •Интеграл вида если функция r является нечетной относительно cosx.
- •Свойства определенного интеграла
- •Вычисление объема тела вращения
- •Несобственные интегралы
- •Тема 4.5. Интегральное исчисление функций нескольких переменных Двойные интегралы
- •Условия существования двойного интеграла
- •Свойства двойного интеграла
- •Вычисление двойного интеграла
- •Геометрические приложения кратных интегралов
- •1) Вычисление площадей в декартовых координатах.
- •Тема 4.6. Дифференциальные уравнения
- •Свойства общего решения
- •Дифференциальные уравнения с разделяющимися переменными
- •Однородные уравнения
- •Линейные уравнения
- •Линейные однородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения
- •Метод Бернулли
- •Метод Лагранжа
- •Подставляем полученное соотношение в исходное уравнение
- •Дифференциальные уравнения высших порядков
- •Уравнения, допускающие понижение порядка
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Тема 4.7. Теория рядов Понятие числового ряда
- •Свойства рядов
- •Необходимые условия сходимости ряда
- •Ряды с неотрицательными членами
- •Признак сравнения рядов с неотрицательными членами
- •Признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакочередующиеся ряды
- •Признак Лейбница
- •Абсолютная и условная сходимость рядов
- •Признаки Даламбера и Коши для знакопеременных рядов
- •Функциональные последовательности
- •Функциональные ряды
- •Свойства равномерно сходящихся рядов
- •1) Теорема о непрерывности суммы ряда.
- •2) Теорема о почленном интегрировании ряда.
- •3) Теорема о почленном дифференцировании ряда.
- •Степенные ряды
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Разложение функций в степенные ряды
- •Формула Маклорена
- •Представление некоторых элементарных функций по формуле Тейлора.
Уравнение прямой по точке и угловому коэффициенту
Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:
и обозначить
,
то полученное уравнение называется
уравнением прямой с угловым коэффициентом
k.
Уравнение прямой в отрезках
Если в общем уравнении прямой Ах + Ву
+ С = 0 коэффициент С
0, то, разделив на С, получим:
или
,
где
Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.
Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.
С = 1,
,
а = -1, b = 1.
Пример. Составить уравнение прямой, проходящей через точку А(-2, -3) и начало координат.
Уравнение прямой имеет вид: , где х1 = у1 = 0; x2 = -2; y2 = -3.
Параллельность прямых
Пусть на плоскости заданы две прямые l1: А1х + В1у + С1 = 0, и l2: А2х + В2у + С2 = 0.
Две прямые параллельны тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны (А1/А2 = В1/В2) или когда угловые коэффициенты прямых равны между собой (k1 = k2)
Перпендикулярность прямых
Если заданы две прямые y = k1x + b1, y = k2x + b2, то острый угол между этими прямыми будет определяться как
.
Две прямые параллельны, если k1 = k2.
Две прямые перпендикулярны, если k1 = -1/k2.
Пример. Определить угол между прямыми: y = -3x + 7; y = 2x + 1.
k1
= -3; k2 = 2
tg
=
;
= /4.
Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.
Находим: k1 = 3/5, k2 = -5/3, k1k2 = -1, следовательно, прямые перпендикулярны.
Пример. Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С.
Находим
уравнение стороны АВ:
;
4x
= 6y – 6; 2x
– 3y + 3 = 0;
Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b.
k
=
.
Тогда y =
.
Т.к. высота проходит через точку С, то
ее координаты удовлетворяют данному
уравнению:
откуда
b = 17. Итого:
.
Ответ: 3x + 2y – 34 = 0.
Тема 1.3. Кривые второго порядка Уравнение второй степени с двумя переменными определяет на плоскости кривую второго порядка и притом единственную. Кривая второго порядка может быть задана уравнением
Ах2 + 2Вху + Су2 + 2Dx + 2Ey + F = 0.
В этом уравнении коэффициенты могут принимать любые действительные значения при условии, что А, В и С одновременно не равны нулю. Существует система координат (не обязательно декартова прямоугольная), в которой данное уравнение может быть представлено в одном из видов, приведенных ниже.
- уравнение эллипса.
- уравнение “мнимого” эллипса.
- уравнение гиперболы.
a2x2 – c2y2 = 0 – уравнение двух пересекающихся прямых.
y2 = 2px – уравнение параболы.
y2 – a2 = 0 – уравнение двух параллельных прямых.
y2 + a2 = 0 – уравнение двух “мнимых” параллельных прямых.
y2 = 0 – пара совпадающих прямых.
(x – a)2 + (y – b)2 = R2 – уравнение окружности.