- •Раздел 1 элементы аналитической геометрии
- •Тема 1.1. Векторы
- •Действия над векторами
- •Свойства векторов
- •Координаты вектора
- •Действия над векторами, заданными своими координатами
- •Скалярное произведение векторов
- •Свойства скалярного произведения:
- •Скалярное произведение векторов в координатной форме
- •Тема 1.2. Прямая на плоскости Уравнение прямой на плоскости
- •Уравнение прямой по точке и нормальному вектору
- •Уравнение прямой по точке и направляющему вектору.
- •Уравнение прямой, проходящей через две точки
- •Уравнение прямой по точке и угловому коэффициенту
- •Уравнение прямой в отрезках
- •Параллельность прямых
- •Перпендикулярность прямых
- •Тема 1.3. Кривые второго порядка Уравнение второй степени с двумя переменными определяет на плоскости кривую второго порядка и притом единственную. Кривая второго порядка может быть задана уравнением
- •Окружность
- •Каноническое уравнение окружности с центром о(a; b) и радиусом r.
- •Гипербола
- •Парабола
- •Раздел 2 элементы линейной алгебры
- •Тема 2.1. Матрицы и определители
- •Виды матриц
- •Равенство матриц
- •Транспонированная матрица
- •Действия с матрицами
- •Свойства операции умножения матриц
- •Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера.
- •Определители
- •Свойства определителей
- •Миноры и алгебраические дополнения элементов определителя
- •Вычисление определителей п-го порядка
- •Способы вычисления определителей:
- •Обратная матрица
- •Свойства обратных матриц
- •Ранг матрицы
- •Вычисление ранга матрицы
- •Идея практического метода вычисления ранга матрицы
- •Тема 2.2. Системы линейных уравнений
- •Матричный метод решения систем линейных уравнений
- •Метод Крамера для решения систем линейных уравнений
- •Элементарные преобразования систем
- •Метод Гаусса
- •Раздел 3. Комплексные числа
- •Тема 3.1. Алгебраическая и геометрическая формы комплексного числа
- •Действия с комплексными числами в алгебраической форме
- •Геометрическая форма комплексного числа
- •Тема 3.2. Тригонометрическая и показательная формы комплексного числа Тригонометрическая форма комплексного числа
- •Действия с комплексными числами в тригонометрической форме
- •Показательная форма комплексного числа
- •Действия с комплексными числами в показательной форме
- •Раздел 4. Основы математического анализа
- •Тема 4.1 Теория пределов и непрерывность Числовые последовательности
- •Ограниченные и неограниченные последовательности
- •Монотонные последовательности
- •Число е
- •Предел функции в точке
- •Предел функции при стремлении аргумента к бесконечности
- •Основные теоремы о пределах
- •Бесконечно малые функции
- •Свойства бесконечно малых функций:
- •Бесконечно большие функции и их связь с бесконечно малыми
- •Типы неопределенностей и методы их раскрытия
- •Неопределенность вида .
- •Неопределенность вида .
- •Сравнение бесконечно малых функций
- •Свойства эквивалентных бесконечно малых
- •Замечательные пределы
- •Непрерывность функции в точке
- •Свойства непрерывных функций
- •Непрерывность некоторых элементарных функций
- •Точки разрыва и их классификация
- •Классификация точек разрыва
- •Непрерывность функции на интервале и на отрезке
- •Свойства функций, непрерывных на отрезке
- •Тема 4.2. Дифференциальное исчисление функции одной переменной Понятие производной функции
- •Геометрический и физический смысл производной
- •Производная сложной функции
- •Табличные значения производных основных функций
- •Дифференциал функции
- •Геометрический смысл дифференциала
- •Свойства дифференциала
- •Приближенные вычисления с помощью дифференциала
- •Производные и дифференциалы высших порядков
- •Основные теоремы дифференциального исчисления
- •Раскрытие неопределенностей Правило Лопиталя
- •Исследование функций с помощью производной Возрастание и убывание функции. Экстремумы
- •Выпуклость, вогнутость графика функции. Точки перегиба.
- •Асимптоты графика функции
- •Исследование функций и построение графиков
- •Тема 4.3. Дифференциальное исчисление функций нескольких переменных Понятие функции нескольких переменных
- •Непрерывность функции нескольких переменных
- •Свойства непрерывных функций
- •Производные и дифференциалы функций нескольких переменных
- •Полное приращение и полный дифференциал
- •Тема 4.4. Интегральное исчисление функции одной переменной Понятие неопределенного интеграла
- •Свойства неопределенного интеграла:
- •Методы интегрирования
- •1. Непосредственное интегрирование
- •2. Метод замены переменной (метод подстановки)
- •3. Интегрирование по частям
- •Интегрирование элементарных дробей
- •Интегрирование рациональных функций. Интегрирование рациональных дробей.
- •Интегрирование некоторых тригонометрических функций.
- •Интеграл вида если функция r является нечетной относительно cosx.
- •Свойства определенного интеграла
- •Вычисление объема тела вращения
- •Несобственные интегралы
- •Тема 4.5. Интегральное исчисление функций нескольких переменных Двойные интегралы
- •Условия существования двойного интеграла
- •Свойства двойного интеграла
- •Вычисление двойного интеграла
- •Геометрические приложения кратных интегралов
- •1) Вычисление площадей в декартовых координатах.
- •Тема 4.6. Дифференциальные уравнения
- •Свойства общего решения
- •Дифференциальные уравнения с разделяющимися переменными
- •Однородные уравнения
- •Линейные уравнения
- •Линейные однородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения
- •Метод Бернулли
- •Метод Лагранжа
- •Подставляем полученное соотношение в исходное уравнение
- •Дифференциальные уравнения высших порядков
- •Уравнения, допускающие понижение порядка
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Тема 4.7. Теория рядов Понятие числового ряда
- •Свойства рядов
- •Необходимые условия сходимости ряда
- •Ряды с неотрицательными членами
- •Признак сравнения рядов с неотрицательными членами
- •Признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакочередующиеся ряды
- •Признак Лейбница
- •Абсолютная и условная сходимость рядов
- •Признаки Даламбера и Коши для знакопеременных рядов
- •Функциональные последовательности
- •Функциональные ряды
- •Свойства равномерно сходящихся рядов
- •1) Теорема о непрерывности суммы ряда.
- •2) Теорема о почленном интегрировании ряда.
- •3) Теорема о почленном дифференцировании ряда.
- •Степенные ряды
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Разложение функций в степенные ряды
- •Формула Маклорена
- •Представление некоторых элементарных функций по формуле Тейлора.
2. Метод замены переменной (метод подстановки)
Этот метод является одним из наиболее эффективных и распространенных приемов интегрирования, позволяющих во многих случаях упростить вычисление интеграла. Суть этого метода состоит в том, что путем введения новой переменной интегрирования заданный интеграл сводится к новому интегралу, который легко вычисляется непосредственным интегрированием.
Пример. Вычислить: ∫ (2x +3)5dx
Введем
новую переменную t
= 2x
+ 3, тогда dt
= t′
∙ dx
= (2x
+3)′ ∙dx
= 2dx,
откуда dx
=
.
Подставим новую переменную в интеграл
(вместо выражения 2x
+ 3 подставим
t,
вместо dx
подставим
):
∫(2x
+3)5dx
= ∫ t5
∙
=
∙∫
t5
dt
=
.
Далее нужно вернуться к первоначальной переменной. Для этого сделаем обратную замену (вместо t подставим выражение 2x +3) и получим окончательный ответ:
∫(2x
+3)5dx
=
=
(2x
+3)6
+ С.
Пример.
Вычислить:
Введем
новую переменную t
= 2+x3,
тогда dt
= (2+x3)′∙
dx
= 3x2dx,
откуда dx
=
.
Подставим новую переменную в интеграл:
=
=
= ln
+C
= ln
+C
Пример.
Вычислить:
Введем
новую переменную t
= 5+ex,
dt
= (5+ex)′∙dx
= ex∙dx,
dx
=
.
Подставим новую переменную в интеграл:
=
=
=
=
=
-
3. Интегрирование по частям
Этот способ основан на известной формуле производной произведения:
(uv) = uv + vu,
где u и v – некоторые функции от х.
В дифференциальной форме: d(uv) = udv + vdu
Проинтегрировав,
получаем:
,
а в соответствии с приведенными выше
свойствами неопределенного интеграла:
или
.
Получили формулу интегрирования по частям, которая позволяет находить интегралы многих элементарных функций.
Этот метод применяется, когда
подынтегральная функция имеет вид:
,
где
- это многочлен степени п, а
является показательной, тригонометрической,
обратной тригонометрической или
логарифмической функцией.
1. Если - показательная или
тригонометрическая функция (т.е. имеем
интегралы вида
,
,
),
то для того чтобы найти эти интегралы,
нужно сделать замену
и применить формулу интегрирования по
частям n раз.
2. Если
- логарифмическая или обратная
тригонометрическая функция (т.е. имеем
интегралы вида
,
,
,
,
)
то для того, чтобы найти эти интегралы
нужно сделать замену:
,
.
3. Интегралы вида
,
(a, b — числа) вычисляются двукратным
интегрированием по частям.
Пример. Вычислить
.
Данный интеграл относится к 1 типу.
Положим
,
;
тогда
,
.
Найдем
.
Подставим в формулу интегрирования по
частям:
.
Пример. Вычислить
.
Данный интеграл относится ко 2 типу
Положим
,
;
тогда
,
.
.
Пример. Вычислить
Данный интеграл относится ко 2 типу.
,
,
,
=
Пример. Вычислить
Интеграл 1
типа. Имеем
,
,
=
Пример. Вычислить
,
,
,
=
Пример. Вычислить
,
,
,
=
=
.
Пример.
Вычислить
Пример.
Вычислить
Видно, что в результате повторного применения интегрирования по частям функцию не удалось упростить к табличному виду. Однако последний полученный интеграл ничем не отличается от исходного. Поэтому перенесем его в левую часть равенства.
