Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ЭВМ.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
4 Mб
Скачать

Раскрытие неопределенностей Правило Лопиталя

К разряду неопределенностей принято относить следующие соотношения:

Теорема Лопиталя. Если функции f(x) и g(x) дифференцируемы в окрестности точки а, непрерывны в точке а, g(x) отлична от нуля в окрестности точки а и f(a) = g(a) = 0, то предел отношения функций при ха равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует.

Замечание. Теорема остается в силе и в том случае, когда в точке x = a функции  (x) и  (x) обращаются в бесконечность.

Принимая во внимание сформулированную теорему, сформулируем следующее правило.

Правило Лопиталя. Для раскрытия неопределенностей и надо заменить предел отношения двух функций пределом отношения их производных. Если окажется, что отношение производных имеет конечный предел, то к этому же пределу стремится и отношение данных функций.

Для раскрытия других неопределенностей , , , и т. п. эти неопределенности следует предварительно преобразовать к неопределенности вида или , для чего их предварительно иногда приходится прологарифмировать.

Если неопределенность не раскрылась после применения правила Лопиталя, это правило можно применить еще раз, но уже к отношению производных (при условии, что отношение производных порождает неопределенности или ).

Пример

Пример

Пример: Найти предел .

Как видно, при попытке непосредственного вычисления предела получается неопределенность вида . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя.

f(x) = 2x + ; g(x) = ex;

;

Пример: Найти предел .

; ; .

Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Естественно, это возможно только в том случае, если вновь полученные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя.

Пример: Найти предел .

; ;

; ;

; ;

Следует отметить, что правило Лопиталя – всего лишь один из способов вычисления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой – либо другой метод.

Пример: Найти предел .

; ;

- опять получилась неопределенность. Применим правило Лопиталя еще раз.

; ;

- применяем правило Лопиталя еще раз.

; ;

;

Неопределенности вида можно раскрыть с помощью логарифмирования. Такие неопределенности встречаются при нахождении пределов функций вида , f(x)>0 в окрестности точки а при х а. Для нахождения предела такой функции достаточно найти предел функции lny = g(x)lnf(x).

Пример

Пример: Найти предел .

Здесь y = xx, lny = xlnx.

Тогда .

Следовательно

Пример: Найти предел .

; - получили неопределенность. Применяем правило Лопиталя еще раз.

;

Пример:

Обозначим

Найдем

Но

Ответ: