
- •2.Литейные дефекты (дислокации)
- •3.Поверхностные дефекты (крошицы зерен, фрагментов и зерен)
- •4.Объемные дефекты (поры, микротрещины и др.)
- •6.Кристаллизация металлов….
- •7.Понятие металлических сплавов.
- •8.Цветные металлы и сплавы на их основе.Маркировка.
- •9.Сплавы на основе титана.Их свойства и маркировка.
- •10.Сплавы на основе алюминия.Их свойства и маркировка.
- •11.Сплавы на основе меди.Их свойства и мвркировка.
- •12.Правило отрезков для диограмм состояния.
- •13.Компоненты и фазы в сплавах железа с углеродом.
- •14.Диограмма состояния железо-цементит.Кривые охлаждения сплава железа и углерода.
- •15. Диаграмма состояния железо-цементит. Кривые охлаждения сплавов железа с углеродом.
- •16. Термическая обработка сталей. Виды термической обработки
- •20. Порошковая металлургия .Свойства и области применения порошковых материалов.
- •21. Неметалические материалы. Полимеры.
- •22. Пластмассы. Состав и классификация.
- •23. Резиновые материалы
- •24.Чугуны
- •6) По химическому составу:
- •25.Классификация чугуна осуществляется по следующим признакам:
- •26.Подготовка сырьевых материалов(производство чугуна)
- •27. Доменное производство чугуна.
- •28. Внедоменное производство железа.
- •29. Влияние химического состава на свойства чугуна.
- •30.Производство стали в кислородных конвертерах.
- •31.Производство стали в мартеновских печах
- •32.Производство стали в электропечах
- •Индукционные тигельные плавильные печи
- •33.Разливка стали
- •34. Способы повышения качества стали
- •35. Строение стального слитка
- •36. Классификационные признаки стали
- •37. Производство меди
- •90 % Первичной меди получают пирометаллургическим способом, 10 % - гидрометаллургическим.
- •38.Производство алюминия.
- •39.Производство титана.
- •40.Характеристика литейного производства. Преимущества и недостатки.
- •41.Классификация литых заготовок.
- •42.Литейные свойства сплавов
- •43.Формовочные смеси классифицируют:
- •Приготовление формовочных смесей
- •Стержневая смесь
- •44. Изготовление литейных форм
- •Формовка в кессонах.
- •Машинная формовка
- •Вакуумная формовка.
- •45. Приёмы ручной формовки
- •Изготовление формы в парных опоках по разъемной модели
- •Формовка шаблонами
- •Формовка в кессонах.
- •46. Литейное производство. Изготовление стержней.
- •47.Изготовление отливок в песчаных формах.
- •48.Литейное производство. Литье в оболочковые формы.
- •49.Литье по выплавляемым моделям. Литье в металлические формы
- •50.Центробежное литье. Литье под давлением.
- •51 Литейное производство
- •95% Изготавливаемого литья проходит контроль герметичности при избыточном давлении до 10 атм., при этом большинство отливок имеет толщины стенок в пределах 2 ¸ 2,5 мм.
- •Дефекты отливок и способы их устранения
- •52 Обработка металов давлением.Классийикация металлов.
- •53. Обработка металов давлением.Прокат и его производство.
- •54 . Обработка металов давлением.Прессование.
- •55. Обработка металлов давлением. Волочение.
- •Технологический процесс волочения включает операции:
- •56. Обработка металлов давлением. Ковка.
- •57. Обработка металлов давлением. Штамповка.
- •58. Горячая объёмная штамповка
- •59. Обработка металлов давлением. Холодная штамповка.
- •60. Обработка металлов давлением. Листовая штамповка.
- •61. Сварочное производство. Виды сварки.
- •62.Сварочное производство. Ручная электродуговая сварка Ручная дуговая сварка.
- •63.Сварочное производство. Автоматическая дуговая сварка под флюсом
- •Автоматическая дуговая сварка под флюсом.
- •64.Сварочное производство. Электрошлаковая сварка
- •Электрошлаковая сварка.
- •65.Контактная сварка. Газовая сварка Газовая сварка
- •Контактная сварка
- •66.Особые способы сварки: плазменная, лазерная,диффузионная,сварка трением,сварка взрывом. Лазерная способ сварки
- •67.Виды сварочных соединений и швов.Термические процессы в сварочном производстве.
- •68.Обработка металлов резанием. Классификация движений в металлорежущих станках.
- •69. Классификация металлорежущих станков.
- •70. Механическая обработка. Точение.
- •71. Механическая обработка. Сверление.
- •72. Механическая обработка. Протягивание.
- •73. Механическая обработка.Фрезирование.
- •74. Механическая обработка.Шлифование.
- •75. Финишная обработка поверхностей деталей.
28. Внедоменное производство железа.
Процессы получения железа и стали непосредственно из рудных материалов, минуя стадию выплавки чугуна в доменных печах. Развитие этого способа получения железа связано с сокращением запасов коксующихся углей, необходимых для производства кокса, служащего главным топливным материалом для доменной плавки. Из многочисленных методов, предложенных, разработанных и осуществлённых в промышленных масштабах в разных странах, наибольшее распространение получила технология производства металлизованных окатышей. Сырьём для производства окисленных окатышей в этом случае служит суперконцентрат глубокого обогащения железных руд, содержащий 68.5—69.5 % железа. Окисленные окатыши обрабатываются специально подготовленным восстановительным газом с температурой ок. 800 °C в печах шахтного типа. Металлизованные окатыши переплавляются в электропечах для производства стали высокого качества.
29. Влияние химического состава на свойства чугуна.
Химический состав чугуна. Чугун относится к числу наиболее сложных по химическому составу сплавов. В нем. кроме железа, углерода, кремния и марганца, в зависимости от происхождения шихтовых материалов, условий выплавки, легирования и модифицирования могут быть обнаружены в тех или иных количествах фосфор, сера, хром, никель, медь, титан, алюминий, кобальт, цирконий, ниобий, ваннаднй, вольфрам, молибден, теллур, магний, кальций, церий, бор, висмут, олово, цинк, мышьяк, азот, кислород, водород и некоторые другие элементы.
Эти элементы, присутствуя в очень малых количествах, в определенных условиях могут оказать существенное влияние на графитизацню чугуна, характер его металлической матрицы и многие важные при производстве отливок свойства.
Углерод и кремний. Влияние этих элементов принято рассматривать совместно, так как в обычных чугунах оба они действуют в одном направлении, хотя и с различной интенсивностью.
Интенсивность влияния элементов на положение чугуна относительно эвтектического состава характеризуется соответствующими коэффициентами в формулах для подсчета величины углеродного эквивалента и степени эвтектичности. Содержание в чугуне углерода и его форма оказывают большое влияние на величины объемной и линейной усадок.
Увеличение содержания углерода в доэвтектнческом чугуне приводит к заметному уменьшению объема усадочных раковин. Это связано с тем, что одновременно в чугуне происходит увеличение количества графита, выделяющегося при кристаллизации эвтектики. Если количество эвтектического графита составляет 1.8 %. то у чугуна усадка не наблюдается.
Дальнейшее увеличение количества эвтектического графита приводит к увеличению объема чугуна.
Изменение содержания углерода оказывает влияние и на характер усадочных пороков: чем выше содержание углерода, тем меньшее развитие имеет усадочная пористость и большее – образование концентрированных усадочных раковин.
На объем усадочных пороков значительное влияние оказывает форма графита. Пористость уменьшается при образовании междендритного и мелкого графита и увеличивается при выделении его в грубой пластинчатой форме. Объем усадочных пороков в чугуне с шаровидным графитом мало отличается от объема их в белом неграфитизированном чугуне.
При рассмотрении влияния углерода на образование пористости необходимо учитывать и содержание фосфора. В высокофосфористых чугунах, содержащих окаю 1 % фосфора, пористость увеличивается с увеличением углеродного эквивалента и количества эвтектического графита.