
- •6. Классификация методов размерной обработки изделий эвс. Электрофизические методы.
- •7. Электроэрозионные методы. Электроискровая обработка. Анодно-механическая обработка. Особенности метода. Схема установки.
- •8. Лучевые методы обработки. Электронно-лучевая обработка. Светолучевая обработка. Особенности метода. Схема установки.
- •9. Обработка ультразвуком. Особенности метода. Схема установки.
- •10. Электрохимическая обработка. Анодно-гидравлическая обработка в проточном электролите. Электрохимическая обработка.
- •11. Защитные покрытия. Виды покрытий. Выбор вида покрытия в зависимости от условий эксплуатации изделия.
- •12. Защитные покрытия. Металлические покрытия (анодные, катодные). Технологический процесс нанесения покрытий. Гальванический способ. Химический метод.
- •14.Лакокрасочные покрытия. Классификация. Технологический процесс нанесения лакокрасочных покрытий
- •15. Контроль покрытий. Контроль внешнего вида, толщины, пористости, прочности сцепления покрытия. Обозначение покрытий.
- •18. Односторонние печатные платы. Основные монтажные и трассировочные характеристики. Основные конструкционные характеристики. Требования к пп
- •19. Двусторонние печатные платы. Основные монтажные характеристики. Область применения. Основные конструкционные характеристики. Требования к пп.
- •20. Многослойные печатные платы. Область применения. Структура. Требования к пп
- •21. Технология изготовления многослойных печатных плат. Основные методы. Технологические операции изготовления слоев и пакетов мпп.
- •Технологические операции изготовления слоев и пакетов мпп
- •23.Конструкционные материалы для производства печатных плат. Контроль параметров.
- •24. Технологическая оснастка для производства печатных плат. Фотошаблоны. Требования к ним. Способы изготовления фотошаблонов. Методы получения оригиналов.
- •25. Механическая обработка печатных плат. Оборудование. Обработка по контуру. Обработка отверстий. Чистовой контур.
- •26. Технология металлизации печатных плат. Химическая металлизация. Гальваническая металлизация. Оборудование.
- •27.Формирование рисунка печатной платы. Сеткографический метод (офсетной печати). Материалы и оборудование.
- •28. Фотолитография. Виды фотошаблонов. Оборудование для производства фотошаблонов. Технологические процессы изготовления фотошаблонов в современном производстве пп.
- •29. Формирование рисунка печатной платы. Фотографический метод. Типы фоторезистов (негативные и позитивные, жидкие и сухие). Оборудование.
- •30. Травление меди с пробельных мест. Химический и электрохимический способы. Оборудование. Травильные растворы.
- •31. Контроль печатных плат. Виды контроля. Дефекты печатных плат.Испытания печатных плат. Виды испытаний. Методика испытаний. Надежность.
- •32. Схемы сборки изделий с базовой деталью и «веерного» типа. Стационарная и подвижная сборка.
- •33. Типовой технологический процесс подготовки и установки навесных эрэ на печатную плату.
- •1) Подготовка эрэ к монтажу.
- •2) Установка компонентов на плату.
- •3) Пайка.
- •Типы smt сборок (Surface-MountTechnology - технология поверхностного монтажа) сборки.
- •Тип 1в: smt Только верхная сторона
- •Тип 2b: smt Верхние и нижние стороны
- •Cпециальный тип: smt верхняя сторона в первом случае и верхняя и нижняя во втором, но pth только верхняя сторона.
- •Тип 1с: smt только верхняя сторона и pth только верхная сторона
- •Тип 2с: smt верхняя и нижняя стороны или pth на верхней и нижней стороне
- •Тип 2c: smt только нижняя сторона или pth только верхняя
- •Тип 2y: smt верхняя и нижняя стороны или pth только на верхней стороне
- •35.Основные операции технологии поверхностного монтажа. Нанесение припойной пасты. Диспенсорное нанесение. Трафаретная печать. Типы трафаретов. Виды брака.
- •36. Основные операции технологии поверхностного монтажа. Установка компонентов. Типы установщиков. Брак установки компонентов.
- •37. Основные операции технологии поверхностного монтажа. Оплавление припойной пасты. Методы нагрева. Брак оплавления.
- •38. Основные операции технологии поверхностного монтажа. Контроль. Отмывка. Ремонт модулей.
- •39. Технология поверхностного монтажа. Пайка ик излучением, в паровой фазе, импульсная, лазерная.
- •40.Электрические соединения и технические требования к ним. Классификация методов получения электрических соединений.
- •41. Технологический процесс пайки. Припои. Флюсы. Формы паяных соединений. Оценка качества соединения.
- •42. Групповые методы пайки. Пайка погружение в расплавленный припой. Пайка волной припоя.
- •43. Проводной монтаж на печатных платах.
- •44. Контактная сварка. Электродуговая сварка. Диффузионная сварка.
- •45. Монтажная микросварка. Термокомпрессионная сварка. Сварка с косвенным импульсным нагревом. Электроконтактная сварка расщепленным электродом. Ультразвуковая сварка.
- •46. Склеивание. Клеи. Показатели качества клеевого соединения.
- •48. Структура процесса герметизации. Основные операции. Бескорпусная герметизация. Пропитка. Обволакивание.
- •49.Структура процесса герметизации. Основные операции. Корпусная герметизация. Заливка. Литьевое прессование.
- •50.Производственные погрешности. Причины возникновения. Законы распределения.
- •51.Методы анализа технологической точности и обеспечения заданной точности выходных параметров сборочных единиц.
- •52.Методы определения коэффициентов влияния в уравнениях погрешностей выходных параметров сборочных единиц.
- •53.Надежность технологических процессов сборки эва
- •54.Математические модели технологических систем. Назначение и виды моделей. Мм на микро-, макро- и мегауровнях.
- •55.Анализ технологических процессов с применением моделей массового обслуживания.
- •56.Планирование и обработка результатов активного эксперимента. Полный и дробный факторный эксперимент.
- •57.Планирование и обработка результатов пассивного эксперимента методами регрессионного анализа.
- •58.Методы насыщенных и сверхнасыщенных планов. Метод ранговой корреляции.
- •59.Планирование и обработка результатов активного эксперимента. Центральные композиционные планы.
- •60.Методы оптимизации исследуемых тп
31. Контроль печатных плат. Виды контроля. Дефекты печатных плат.Испытания печатных плат. Виды испытаний. Методика испытаний. Надежность.
Контроль и испытание ПП предназначены для определения качества изготовленных изделий, под которым понимают степень их соответствия требованиям чертежа, технических условий, отраслевых и государственных стандартов. Готовая продукция подлежит сертификации, согласно действующему законодательству.
На повышение качества влияют:
входной контроль исходных материалов и технологических сред;
строгое соблюдение режимов и последовательности операций процесса производства;
использование автоматизированного технологического оборудования со встроенными средствами активного контроля;
организация объективного пооперационного и выходного контроля;
проведение испытаний;
организация системы управления качеством.
Входному контролю подвергается каждая партия поступающего на производство диэлектрика, фоторезиста, трафаретной печатной краски. Особое внимание уделяется технологическим свойствам материалов. Проверяются и постоянно корректируются электрофизические и химические параметры используемых технологических сред на операциях травления, металлизации.
Операционный контроль качества проводится после наиболее ответственных технологических операций. Число контрольных точек определяется совершенством и стабильностью процесса. Тщательно проверяется качество фотошаблонов и сетчатых трафаретов, монтажных отверстий, межслойных соединений и спрессованных слоев МПП. На этих операциях стремятся использовать автоматизированное технологическое оборудование с системами управления и контроля. Высокая надежность операционного контроля сводит к минимуму число дефектных изделий на выходном контроле.
Основными видами выходного контроля ПП являются:
контроль внешнего вида;
инструментальный контроль геометрических параметров и оценка точности выполнения отдельных элементов, совмещения слоев;
проверка металлизации отверстий и их устойчивости к токовой нагрузке;
определение целостности токопроводяших цепей и сопротивления изоляции.
Рассмотрим некоторые характерные дефекты, имеющие место при изготовлении ПП, и причины их возникновения.
Расслоение многослойной структуры возникает при использовании склеивающих прокладок с просроченным сроком годности или низким содержанием смолы, некачественной подготовке слоев перед прессованием, нарушении режимов прессования или механической обработке контура. Незначительное расслоение платы по углам может быть устранено эпоксидным клеем.
Отслоение элементов печатного монтажа вызывается теми же причинами, что и предыдущий вид дефекта. Оно также происходит вследствие применения узких и длинных печатных проводников, занижения размеров контактных площадок по отношению к размерам просверленных отверстий. Дефект легко устраняется подклеиванием.
Выход отверстий за пределы контактных площадок наблюдается из-за недостаточной точности используемого оборудования и технологической оснастки, смещения слоев при прессовании, деформации диэлектрических оснований и неправильного базирования ПП при выполнении отверстий. Дефект практически не устраняется.
Вздутие происходит, если между слоями остались воздух или влага, при прессовании полное давление прикладывается раньше начала желатинизации клея, и оно неравномерно распределяется по площади платы. Дефект не устраняется.
Коробление плат вызывается несбалансированностью конструкции ПП, неоднородностью склеивающего материала, снятием заготовок с пресса до полного охлаждения плат. Уменьшить коробление можно терморихтовкой.
Короткие замыкания между элементами печатного монтажа могут быть вызваны некачественным травлением, смещением слоев при прессовании, малыми расстояниями между элементами печатного монтажа, попаданием посторонних металлических включений между слоями МПП при сборке. Дефекты легко устраняются на наружных слоях МПП, а на внутренних их устранить технически почти невозможно.
Разрыв токопроводящих цепей обусловливается следующими причинами:
подтравливанием печатных проводников,
наличием глубоких царапин на поверхности исходного материала,
возникновением внутренних напряжений при прессовании,
некачественной подготовкой поверхности отверстий перед металлизацией.
Устранить такие дефекты сложно, а на внутренних слоях практически невозможно. Несовмещение слоев при прессовании МПП вызывается избыточным давлением, непараллельностью плит пресса. Дефект не устраняется.
Геометрические параметры ПП:
толщина,
диаметр отверстий,
расстояние между их центрами,
величина коробления,
габаритные размеры,
смещение отверстий относительно центра
контролируются с помощью стандартизованных инструментов для измерения линейных размеров. Погрешности формы элементов рисунка ПП определяются визуально с помощью проектора при 10, 20-кратном стереоскопическом увеличении. К таким приборам относятся КПП-1 (СССР), VS/4 фирмы VisiomEngineering (Великобритания) и др.
Проверку металлизации монтажных отверстий проводят разрушающим или неразрушающим методом. При разрушающем методе изготавливают микрошлиф и по нему определяют толщину слоя, равномерность распределения металлизации, структуру покрытия, его пористость, наличие трещин, качество срастания с элементами печатного монтажа. Но длительность приготовления образцов ограничивает применение этого метода этапом отработки ТП. Экспрессную проверку качества металлизации проводят измерением омического сопротивления контактного перехода при подаче тока 1 А. Схема измерения показана на рисунке.
Схема четырехзондового метода контактирования при измерении сопротивления металлизированного перехода |
Зависимость сопротивления от толщины слоя металлизации отверстия в МПП толщиной 2мм |
3 - токовые электроды; 4- электроды напряжения |
1 - сопротивление отверстий с трещиной 0,7 мм на половину окружности; 2 - теоретическая кривая |
Калибровочный график и экспериментальные результаты изменения сопротивления от толщины слоя металлизации приведены на рисунке. Границей качественного и некачественного соединений является значение 500 мкОм, которое уточняется для каждого монтажного перехода. Разработанное программируемое оборудование позволяет измерять сопротивление в диапазоне 40...2000 мкОм с точностью ±1%. Время Контроля одного отверстия составляет 1 с.
Проверка устойчивости соединений к токовым нагрузкам осуществляется на основе многочасовой работы металлизированных отверстий под током 1 ... 3 А. Ослабленные соединения выгорают или в них увеличивается температура, изменение которой эффективно и с высокой точностью контролируется тепловизионными системами.
Целостность токопроводящих цепейи сопротивление изоляции между проводниками проверяются электрическим методом на автематических тестерах с числовым программным управлением. Печатная плата нри помощи контактного устройства соединяется на входе через коммутатор с блоком опроса, а на выходе - с измерительным устройством. Контактное устройство представляет собой матрицу из иглообразных подпружиненных контактов, расположенных в узлах координатной сетки и прижатых к плате с усилием. В соответствии с записанной на перфоленте информаци ей на каждую проверяемую цепь подается сигнал 5...12 В. Результат измерения сравнивается с эталонным, записанным в памяти микроЭВМ, и на основании этого сравнения определяется годность цепи. Информация о цепях, не соответствующих установленным требованиям, выдается на цифропечатающее устройство. Снабжение блока опроса высоковольтным источником (150 ... 1500 В) позволяет контролировать электрическую прочность изоляции. Максимальная скорость контроля на одну цепь составляет 400 нс. Примером таких тестеров служат установки УКИП-01 и УКПМ-2 (СССР), модель 834 фирмы DIT-MCO (США), модель МРРЗООО фирмы Mania (ФРГ) и др.
Испытания ПП и МПП позволяют в условиях климатических и электрических воздействий оценить их соответствие техническим требованиям, предъявляемым к аппаратуре, и установить скрытые дефекты. Они разделяются наприемосдаточные, периодические и типовые.
Приемосдаточные испытания проводятся партиями не более 1000 ... 1200 шт., изготовленными по одной конструкторской и технологической документации, и включают:
стопроцентный контроль габаритных и установочных размеров, внешнего вида диэлектрического основания и проводящего рисунка на соответствие конструкторской документации, величины изгиба и скручивания, правильности монтажных соединений на отсутствие обрывов и коротких замыканий;
выборочную проверку (3% от партии, но не менее 3 шт.) сопротивления изоляции в нормальных климатических условиях при ручном контроле и стопроцентную проверку при автоматизированном;
выборочный контроль (1 - 2 платы от ежедневной выработки) толщины металлизации в отверстиях;
выборочную проверку (3% от партии, но не менее 3 шт.) паяемости контактных площадок и металлизированных отверстий, а также их устойчивости к перепайкам.
Периодические испытания ПП и МПП проводятся с целью подтверждения их эксплуатационных характеристик, правильности выполнения ТП и соответствия конструкторской документации не реже одного раза в шесть месяцев. Для контроля случайным образом выбираются платы, прошедшие приемосдаточные испытания в количестве: 5 плат при опытном и мелкосерийном производстве и 10 плат при серийном производстве. В объем испытании входят:
многократные изгибы ГПП и ГПК (ГПП должны вы держивать 5-кратный цикл изгибов радиусом 10±0,5 мм, а ГПК - 150-кратный цикл изгибов радиусом 3±0,5 мм на 90° в обе стороны от исходного положения);
перепайка (5-10) отверстий и (5 - 10) контактных площадок, проверка паяемости (1-2 платы);
проверка омического сопротивления металлизированных отверстий (3 шт.) и их устойчивости к кратковременной токовой перегрузке;
проверка в нормальных климатических условиях целостности электрических цепей и сопротивления изоляции (но не менее чем на 5 парах проводников, в том числе цепей питания);
контроль внешнего вида, целостности соединений и сопротивления изоляции после воздействия климатических факторов, устанавливаемых в зависимости от группы жесткости испытаний по соответствующему стандарту.
Типовые испытания проводятся для определения эффективности внесенных изменений в конструкцию и технологию ПП. Программа испытаний составляется предприятием, изготавливающим ПП, и согласовывается с разработчиком.