
- •1.Биология как наука о закономерностях и механизмах жизнедеятельности и развития организмов, ее задачи. Объект и методы исследования.
- •2.Исторический метод и системный подход -основа познания общих законов природы.
- •3.Биосоциальная природа человека
- •4. Возрастающая роль познания биологических механизмов жизнедеятельности. Причины
- •2. Философско-методологические проблемы биологии
- •3. Биологическая реальность
- •5. Роль философской рефлексии в развитии наук о жизни
- •5. Уровни организации живого (молекулярно-генетический, клеточный, организменный, популяционно-видовой, биосферный)
- •6.Доказательства единства органического мира на разных уровнях живых систем.
- •7. Клеточная теория. Ее естественнонаучное и мировоззренческое состояние.
- •8. Субмикроскопическое строение живой и растительной клетки. Клетка как открытия биологическая система. Строение и функции органоидов клетки.
- •9. Качественные особенности обмена веществ в живой системе
- •11. 2 Й закон термодинамики в применении к живым системам.Понятие об энторпии.
- •12.Основные формы обмена веществ
- •13. Биохимическая сущность фотосинтеза и космическая роль зеленых растений
- •14 Общность и различие фотосинтеза и дыхания.
- •15. Особенности ассимиляции и диссимиляции в гетеротрофном обмене веществ
- •4. Разновидности ассимиляции и диссимиляции
- •16. Фазы гетеротрофной ассимиляции
- •17. Этапы гетеротрофной диссимиляции
- •18. Гликолиз и тканевое дыхание
- •19. Окислительное фосфолирование. Свободная энергия. Лихорадка и гипертемия
- •20.Митохондрии энергосберегающие системы клеток. Эндосимбиотическая теория
- •21. Организм как открытая саморегулирующая система
- •22.Гомеостаз и гомеокинез
- •23 Схема строения нуклеиновых кислот(днк рнк)
- •24.Модль днк(Уотсон и Крик)
- •25.Хромосомы.Их строение.Число,функционирование.Номенклатура и классификация.Пуфы
- •26.Гомологичные хромосомы диплоидный набор хромосом
- •27.Гетерохроматин и эухроматин
- •28 Значение механизмов положительных и отрицательных обратных связей.Иммунитет
- •29.Генетические,клеточные и системные основы гомеостатических реакций многоклеточных организмов
- •30. Роль эндокринной и нервной систем в обеспечении постоянства внутренней среды и адаптовых изменений.
17. Этапы гетеротрофной диссимиляции
Диссимиляция (катаболизм, энергетический обмен) — процесс, обратный реакциям биосинтеза. Сложные биополимеры распадаются, образуя простые вещества с выделением энергии, необходимой для реакций биосинтеза.
Выделяют три этапа энергетического обмена.
1. Подготовительный этап. На этом этапе молекулы полисахаридов, белков, жиров и нуклеиновых кислот распадаются на более мелкие молекулы — глюкозу, аминокислоты, жирные кислоты, глицерин, нуклеотиды.
2. Бескислородный — этап неполного окисления (брожения), таге лее называется анаэробным дыханием (гликолизом). При этом из 1 молекулы глюкозы образуется 2 молекулы молочной кислоты, а из 2 АДФ и 2 остатков фосфорной кислоты синтезируется 2 молекулы АТФ. В АТФ запасается 40% энергии, остальное рассеивается в виде тепла.
3. Кислородное расщепление аэробное дыхание.
На этом этапе органические соединения (молочная кислота) окисляются до конечных продуктов СО^ и Н20. Кислородное расщепление сопровождается выделением большого количества энергии и запасанием 90% ее в 36 молекулах АТФ.
18. Гликолиз и тканевое дыхание
Гликолиз – первый и самый древний этап диссимиляции(анаэробный).
Возник ранее, чем растительный мир занял свою эволюционную нишу.
Самый надежный механизм извлечения энергии
Но менее эффективный энергетический механизм.
В ходе гликолиза клетка может запасти только 2 молекулы АТФ.
В анаэробных условиях пируват переходит в лактат.
Тканевое дыхание – самый эффективный и сложный из этапов диссимиляции (протекает в митохондриях)
Аэробный прцесс
Появился на более поздних этапах, после возникновения растений
Самый эффективный энергетический механизм, но зависящий от присутствия кислорода.
В ходе тканевого дыхания клетка способна запасти 36 молекул АТФ.
19. Окислительное фосфолирование. Свободная энергия. Лихорадка и гипертемия
Д) Лихорадка - защитная реакция организма направленная, как правило, на борьбу с чужеродным фактором. Усиление окисления сопровождается усилением фосфорилирования – достигается дополнительный приток энергии.
Гипертермия – пагубный процесс, сопровождающийся разобщением процессов окисления и фосфорилирования – перегрев организма не сопровождающийся накоплением дополнительной энергии.
20.Митохондрии энергосберегающие системы клеток. Эндосимбиотическая теория
Еще в 1921 г. русский ботаник Б.М. Козо-Полянский высказал мнение, что клетка — это симбиотрофная система, в которой сожительствует несколько организмов. В настоящее время эндосимбиотическая теория происхождения митохондрий и хлоропластов является общепринятой. Согласно этой теории, митохондрии — это в прошлом самостоятельные организмы. По мнению Л. Маргелис (1983), это могли быть эубактерии, содержащие ряд дыхательных ферментов. На определенном этапе эволюции они внедрились в примитивную, содержащую ядро, клетку. Оказалось, что ДНК митохондрий и хлоропластов по своей структуре резко отличается от ядерной ДНК высших растений и сходна с бактериальной ДНК (кольцевое строение, нуклеотидная последовательность). Сходство обнаруживается и по величине рибосом. Они мельче цитоплазматических рибосом. Синтез белка в митохондриях, подобно бактериальному, подавляется антибиотиком хлорамфениколом, который не влияет на синтез белка на рибосомах эукариот. Кроме того, система переноса электронов у бактерий расположена в плазматической мембране, что напоминает организацию электронтранспортной цепи во внутренней митохондриальной мембране.
Свойства митохондрий (белки, структура) закодированы частично в ДНК митохондрий, а частично в ядре. Так, митохондриальный геном кодирует белки рибосом и частично систему переносчиков электронотранспортной цепи, а в геноме ядра кодирована информация о белках-ферментах цикла Кребса. Сопоставление размеров митохондриальной ДНК с числом и размером митохондриальных белков показывает, что в ней заложено информации почти для половины белков. Это и позволяет считать митохондрии, как и хлоропласты, полуавтономными, т.е. не полностью зависящими от ядра. Они имеют собственную ДНК и собственную белоксинтезирующую систему, и именно с ними и с пластидами связана так называемая цитоплазматическая наследственность. В большинстве случаев это наследование по материнской линии, так как инициальные частицы митохондрий локализованы в яйцеклетке. Таким образом, митохондрии всегда образуются от митохондрий. Широко обсуждается вопрос, как рассматривать митохондрии и хлоропласты с эволюционной точки зрения.