Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kollokvium.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
149.25 Кб
Скачать

17. Этапы гетеротрофной диссимиляции

Диссимиляция (катаболизм, энергетический обмен) — процесс, обратный реакциям биосинтеза. Сложные биополимеры распадаются, образуя простые вещества с выделением энергии, необходимой для реакций биосинтеза.

Выделяют три этапа энергетического обмена.

1. Подготовительный этап. На этом этапе молекулы полисахаридов, белков, жиров и нуклеиновых кислот распадаются на более мелкие молекулы — глюкозу, аминокислоты, жирные кислоты, глицерин, нуклеотиды.

2. Бескислородный — этап неполного окисления (брожения), таге лее называется анаэробным дыханием (гликолизом). При этом из 1 молекулы глюкозы образуется 2 молекулы молочной кислоты, а из 2 АДФ и 2 остатков фосфорной кислоты синтезируется 2 молекулы АТФ. В АТФ запасается 40% энергии, остальное рассеивается в виде тепла.

3. Кислородное расщепление аэробное дыхание.

На этом этапе органические соединения (молочная кислота) окисляются до конечных продуктов СО^ и Н20. Кислородное расщепление сопровождается выделением большого количества энергии и запасанием 90% ее в 36 молекулах АТФ.

18. Гликолиз и тканевое дыхание

Гликолиз – первый и самый древний этап диссимиляции(анаэробный).

  • Возник ранее, чем растительный мир занял свою эволюционную нишу.

  • Самый надежный механизм извлечения энергии

  • Но менее эффективный энергетический механизм.

  • В ходе гликолиза клетка может запасти только 2 молекулы АТФ.

  • В анаэробных условиях пируват переходит в лактат.

Тканевое дыхание – самый эффективный и сложный из этапов диссимиляции (протекает в митохондриях)

  • Аэробный прцесс

  • Появился на более поздних этапах, после возникновения растений

  • Самый эффективный энергетический механизм, но зависящий от присутствия кислорода.

  • В ходе тканевого дыхания клетка способна запасти 36 молекул АТФ.

19. Окислительное фосфолирование. Свободная энергия. Лихорадка и гипертемия

Д) Лихорадка - защитная реакция организма направленная, как правило, на борьбу с чужеродным фактором. Усиление окисления сопровождается усилением фосфорилирования – достигается дополнительный приток энергии.

Гипертермия – пагубный процесс, сопровождающийся разобщением процессов окисления и фосфорилирования – перегрев организма не сопровождающийся накоплением дополнительной энергии.

20.Митохондрии энергосберегающие системы клеток. Эндосимбиотическая теория

Еще в 1921 г. русский ботаник Б.М. Козо-Полянский высказал мнение, что клетка — это симбиотрофная система, в которой сожительствует несколько организмов. В настоящее время эндосимбиотическая теория происхождения митохондрий и хлоропластов является общепринятой. Согласно этой теории, митохондрии — это в прошлом самостоятельные организмы. По мнению Л. Маргелис (1983), это могли быть эубактерии, содержащие ряд дыхательных ферментов. На определенном этапе эволюции они внедрились в примитивную, содержащую ядро, клетку. Оказалось, что ДНК митохондрий и хлоропластов по своей структуре резко отличается от ядерной ДНК высших растений и сходна с бактериальной ДНК (кольцевое строение, нуклеотидная последовательность). Сходство обнаруживается и по величине рибосом. Они мельче цитоплазматических рибосом. Синтез белка в митохондриях, подобно бактериальному, подавляется антибиотиком хлорамфениколом, который не влияет на синтез белка на рибосомах эукариот. Кроме того, система переноса электронов у бактерий расположена в плазматической мембране, что напоминает организацию электронтранспортной цепи во внутренней митохондриальной мембране.

Свойства митохондрий (белки, структура) закодированы частично в ДНК митохондрий, а частично в ядре. Так, митохондриальный геном кодирует белки рибосом и частично систему переносчиков электронотранспортной цепи, а в геноме ядра кодирована информация о белках-ферментах цикла Кребса. Сопоставление размеров митохондриальной ДНК с числом и размером митохондриальных белков показывает, что в ней заложено информации почти для половины белков. Это и позволяет считать митохондрии, как и хлоропласты, полуавтономными, т.е. не полностью зависящими от ядра. Они имеют собственную ДНК и собственную белоксинтезирующую систему, и именно с ними и с пластидами связана так называемая цитоплазматическая наследственность. В большинстве случаев это наследование по материнской линии, так как инициальные частицы митохондрий локализованы в яйцеклетке. Таким образом, митохондрии всегда образуются от митохондрий. Широко обсуждается вопрос, как рассматривать митохондрии и хлоропласты с эволюционной точки зрения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]